Math, asked by harini3029, 9 months ago

Pls ans this question quickly ​

Attachments:

Answers

Answered by varunswatantra2010
0

Answer:

Sorry I don't read chapter

Answered by senboni123456
0

Step-by-step explanation:

In the given expression, let θ=α

1 -  \frac{ \sin^{2} ( \alpha ) }{1 +  \cos( \alpha ) }  +  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  -  \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  -  \frac{1}{ \sec( \alpha ) }

 \frac{1 +  \cos( \alpha )  -  \sin ^{2} ( \alpha ) }{1 +  \cos( \alpha ) }  +  \frac{1 +  \cos( \alpha ) }{ \sin( \alpha ) }  -  \frac{ \sin( \alpha ) }{1 -  \cos( \alpha ) }  -  \cos( \alpha )

 \frac{(1 +  \cos( \alpha ))  - (1 -  \cos^{2} ( \alpha )) }{1 +  \cos( \alpha ) }  +  \frac{(1 -  \cos ^{2} ( \alpha ) ) -  \sin^{2} ( \alpha ) }{(1 -  \cos( \alpha )) \sin( \alpha )  }  -  \cos( \alpha )

 \frac{(1 +  \cos( \alpha ))  - (1 -  \cos( \alpha )) (1 +  \cos( \alpha )) }{1 +   \cos( \alpha ) } +  \frac{ \sin^{2} ( \alpha )  -  \sin^{2} ( \alpha ) }{ \sin( \alpha ) (1 -  \cos( \alpha )) }  -  \cos( \alpha )

 =  \frac{(1 +  \cos( \alpha )) \cos( \alpha )   }{1 +  \cos( \alpha ) }  -  \cos( \alpha )

 =  >  \cos( \alpha )  -  \cos( \alpha )

 = 0

Similar questions