Math, asked by therock95, 7 months ago

pls answer................​

Attachments:

Answers

Answered by Anonymous
0

Step-by-step explanation:

3^x-1=3^2

x-1=2

Therefore

X=3

4^y+2=4^3

y+2=3

y=1

x/y+y/x

3/1+1/3

=10/3

Hope This will help you

❤❤❤

Mark me as brainliest if possible

Answered by Truebrainlian9899
46

☞︎︎︎ Question :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☀︎︎ Solve -

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \dashrightarrow  \:  \: { \mathtt{ \dfrac{x}{y}  +  \dfrac{y}{x} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Given :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➪ \:  \:   \mathtt{3 {}^{x - 1}  = 9}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ➪ \:  \:   \mathtt{4 {}^{y  + 2}  = 64}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Solution with explanatiin :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • Make the basis same :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 ➪ \:  \:   \mathtt{3 {}^{x - 1}  = 3 {}^{2} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✞︎ Since bases are same , therefore powers can be equated -

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \implies  \:   \mathtt{ x - 1 = 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • ❥︎ On transposing the terms :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \implies  \:   \mathtt{ x  = 2 + 1}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \looparrowright  \boxed{ \therefore  \:   \mathtt{ x  = 3}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ Now,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \:   \mathtt{4 {}^{y  + 2}  =  {4}^{3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✞︎ Since bases are same , therefore powers can be equated -

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: y + 2 = 3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  • ❥︎ On transposing the terms :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies \mathtt{ \: y = 3 - 2}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \looparrowright  \boxed{ \therefore  \:   \mathtt{ y  = 1}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

☞︎︎︎ we have the value of x and y

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

✞︎ on solving :

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \dashrightarrow  \:  \: { \mathtt{ \dfrac{x}{y}  +  \dfrac{y}{x} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies  \:  \: { \mathtt{ \dfrac{3}{1}  +  \dfrac{1}{3} }}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \implies  \:  \: { \mathtt{ \dfrac{9 + 1}{3}}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \:  \:  \boxed{ =  \frac{10}{ 3} }

Similar questions