Math, asked by shreyansh6793, 8 months ago

solve this step by step.

Attachments:

Answers

Answered by sashankghandikot22ru
1

Answer:

LHS: \frac{cos(90-x)}{1+sin(90-x))}  + \frac{1+sin(90-x)}{cos(90-x)}

We know that Cos(90-x)= Sin x and Sin(90-x)= Cos x

Therefore, \frac{sin x}{1+cos x} + \frac{1+cosx}{sinx}

By taking LCM and multiplying, we get:

           \frac{sin^2x+ (1+cosx)^2}{(1+cosx)sinx }=\frac{sin^2x+cos^2x+1+2cosx}{(1+cosx)sinx}= \frac{2+2cosx}{(1+cosx)sinx} = \frac{2(1+cosx)}{(1+cosx)sinx}

Divide 1+cosx and we get: \frac{2}{sinx} = 2cosecx

           = RHS

Hence Proved

           

Similar questions