Math, asked by harshitasuri2004, 5 hours ago

Pls answer asap! I'll mark u the brainliest!​

Attachments:

Answers

Answered by shadowsabers03
9

Given,

\small\text{$\displaystyle\longrightarrow\int\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}\,dx=k\log\left|\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right|+c$}

Differentiating both sides wrt x,

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=\dfrac{d}{dx}\left[k\log\left|\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right|+c\right]$}

We have,

  • \small\text{$\dfrac{d}{dx}(c\cdot f(x))=c\cdot\dfrac{d}{dx}(f(x))$}
  • \small\text{$\dfrac{d}{dx}\big[\log|f(x)|\big]=\dfrac{\dfrac{d}{dx}(f(x))}{f(x)},$}
  • \small\text{$\dfrac{d}{dx}(c)=0$}

where c is a constant. Then,

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{\dfrac{d}{dx}\left[\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right]}{\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}+0$}

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{\dfrac{d}{dx}\left[\tan^{-1}\left(x+\dfrac{1}{x}\right)\right]}{\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

By chain rule,

  • \small\text{$\dfrac{d}{dx}(f(g(x)))=\dfrac{d}{d(g(x))}(f(g(x)))\cdot\dfrac{d}{dx}(g(x))$}

Then,

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{\dfrac{1}{1+\left(x+\dfrac{1}{x}\right)^2}\cdot\left(1-\dfrac{1}{x^2}\right)}{\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{\dfrac{1}{x^2+\dfrac{1}{x^2}+3}\cdot\left(1-\dfrac{1}{x^2}\right)}{\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{1-\dfrac{1}{x^2}}{\left(x^2+\dfrac{1}{x^2}+3\right)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

Multiplying both numerator and denominator of the fraction in RHS by \small\text{$x^2,$}

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{x^2\left(1-\dfrac{1}{x^2}\right)}{x^2\left(x^2+\dfrac{1}{x^2}+3\right)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

\small\text{$\longrightarrow\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=k\cdot\dfrac{x^2-1}{\left(x^4+3x^2+1\right)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}$}

\small\text{$\longrightarrow(k-1)\cdot\dfrac{x^2-1}{\left(x^4+3x^2+1\right)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}=0$}

Since \small\text{$\dfrac{x^2-1}{\left(x^4+3x^2+1\right)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}\neq0$} for all x, we get,

\small\text{$\longrightarrow\underline{\underline{k=1}}$}

Hence 1 is the answer.

Answered by mathdude500
8

Given Question :-

If

\small\text{$\displaystyle\int\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}\,dx=k\log\left|\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right|+c$}

then the value of k is equals to

\large\underline{\sf{Solution-}}

Given that,

\rm :\longmapsto\:\displaystyle\int\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}\,dx

\rm \:  =  \: k\log\left|\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right|+c

Let assume that,

\rm :\longmapsto\:I \:  =  \: \displaystyle\int\dfrac{x^2-1}{(x^4+3x^2+1)\tan^{-1}\left(\dfrac{x^2+1}{x}\right)}\,dx

To evaluate this, we use method of Substitution.

Let we substitute,

 \red{\rm :\longmapsto\:  {tan}^{ - 1}\dfrac{ {x}^{2}  + 1}{x}  = y}

On differentiating both sides w. r. t. x, we get

 \red{\rm :\longmapsto\: \dfrac{d}{dx}  {tan}^{ - 1}\dfrac{ {x}^{2}  + 1}{x}  = \dfrac{d}{dx} y}

 \red{\rm :\longmapsto\:\dfrac{1}{1 +  {\bigg[\dfrac{ {x}^{2}  + 1}{x} \bigg]}^{2} }\dfrac{d}{dx}\dfrac{ {x}^{2}  + 1}{x} = \dfrac{dy}{dx} }

 \red{\rm :\longmapsto\:\dfrac{ {x}^{2} }{ {x}^{2}+ {x}^{4} + 1 +  {2x}^{2} }\dfrac{d}{dx}\bigg[x + \dfrac{1}{x} \bigg] = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:\dfrac{ {x}^{2} }{{x}^{4} + 1 +  {3x}^{2} }\bigg[1 -  \dfrac{1}{ {x}^{2} } \bigg] = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:\dfrac{ {x}^{2} }{{x}^{4} + 1 +  {3x}^{2} }\bigg[\dfrac{ {x}^{2}  - 1}{ {x}^{2} } \bigg] = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{{x}^{4} + 1 +  {3x}^{2} } = \dfrac{dy}{dx}}

 \red{\rm :\longmapsto\:\dfrac{ {x}^{2} - 1 }{{x}^{4} + {3x}^{2} + 1 } \: dx = dy}

So, on substituting the values, we get

\rm :\longmapsto\:I = \displaystyle\int \:  \frac{dy}{y}

\bf\implies \:I \:  =  \: logy + c

\bf\implies \:I = log\bigg | {tan}^{ - 1}\bigg( \dfrac{ {x}^{2}  + 1}{x} \bigg)\bigg| + c

But it is given that,

\bf :\longmapsto\:I = k\log\left|\tan^{-1}\left(\dfrac{x^2+1}{x}\right)\right|+c

So, on comparing, we get

\red{\bf\implies \: \boxed{ \bf{ \:k \:  =  \: 1 \:  \: }}}

Additional Information :-

\begin{gathered}\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \displaystyle \int \rm \:f(x) \: dx\\ \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf kx + c \\ \\ \sf sinx & \sf - \: cosx+ c \\ \\ \sf cosx & \sf \: sinx + c\\ \\ \sf {sec}^{2} x & \sf tanx + c\\ \\ \sf {cosec}^{2}x & \sf - cotx+ c \\ \\ \sf secx \: tanx & \sf secx + c\\ \\ \sf cosecx \: cotx& \sf - \: cosecx + c\\ \\ \sf tanx & \sf logsecx + c\\ \\ \sf \dfrac{1}{x} & \sf logx+ c\\ \\ \sf {e}^{x} & \sf {e}^{x} + c\end{array}} \\ \end{gathered}\end{gathered}

Similar questions