Math, asked by honalu, 10 months ago

pls answer correctly ​

Attachments:

Answers

Answered by StrangeStark
5

Answer:

....here is your answer......

......mark me as brainlist.....

....and thanks my 20 answers...... .

....follow me guys.....

....miss you sushant Singh Rajput....

...sir

Attachments:
Answered by Brainlyheros
3

Answer:

According to your question , wr have to evalute the following by putting the value of Trignometery ratios

 \frac{5 \cos {}^{2} ( {60}^{ }  )  + 4 {sec}^{2}30 -  {tan}^{2} 45 }{sin {}^{2}30 +  {cos}^{2} 30 }  \\  \\  =  \geqslant cos60 =  \frac{1}{2}  \\   \\ =  \geqslant  sec30 =  \frac{2}{ \sqrt{3} }  \\  \\  =  \geqslant tan45 = 1 \\  \\  =  \geqslant sin30 =  \frac{1}{2}  \\  \\  =  \geqslant cos30 =  \frac{ \sqrt{3} }{2}  \\  \\  =  \geqslant  \frac{5cos {}^{2} 60 \:  + 4 {sec}^{2} 30 -   {tan}^{2}45  }{ {sin}^{2} 30 +  {cos}^{2}30 }  \\  \\  =  \geqslant  \frac{5 \times ( \frac{1}{2} ) {}^{2}  + 4 \times ( \frac{2}{ \sqrt{3} } ) {}^{2} - (1) {}^{2}  }{( \frac{1}{2} ) {}^{2}  + ( \frac{ \sqrt{3} }{2} ) {}^{2} }   \\  \\  =  >  \frac{5 \times  \frac{1}{4} + 4 \times  \frac{4}{3}  - 1 }{ \frac{1}{4}  +  \frac{3}{4} }  \\  \\  =  \geqslant  \frac{ \frac{5}{4}  +  \frac{16}{3} - 1 }{ \frac{1 + 3}{4} }  \\  \\  =  \geqslant  \frac{ \frac{15 + 64}{12}  - 1}{ \frac{4}{4} }  \\  \\  =  \geqslant  \frac{ \frac{79}{12} - 1 }{1}

 \frac{79}{12}  - 1 \\  \\  =  \geqslant  \frac{79 - 12}{12}  \\  \\  =  \geqslant  \frac{67}{12}

Similar questions