Math, asked by bintosep102008, 11 months ago

pls, answer correctly......

If sec θ = x + 1/4x, prove that sec θ + tan θ = 2x

Answers

Answered by Anonymous
15

Answer:Given:

secϴ = x + 1/4x…….(1)

tan²ϴ = sec²ϴ -1

tan²ϴ =  (x + 1/4x)² -1  

[From equation 1]

tan²ϴ = x² + 1/16x² +½ -1

[ (a+b)² = a² + 2ab +b²]

tan²ϴ = x² + 1/16x² - ½

tan²ϴ = (x - 1/4x)²

[a² +b²-2ab = (a-b)²]

tanϴ = ±(x - 1/4x)

[Taking square roots both sides]

tanϴ = (x - 1/4x) or - (x - 1/4x)

When tanϴ =  (x - 1/4x), then  

secϴ +tanϴ = x +1/4x + x -1/4x = 2x

[From equation 1]

secϴ +tanϴ = 2x

When tanϴ = - (x - 1/4x), then  

secϴ +tanϴ = (x +1/4x) -( x -1/4x )  

 [From equation 1]

=  x +1/4x - x + 1/4x   

= 1/4x + 1/4x = 2/4x = 1/2x

secϴ +tanϴ = 1/2x

HOPE THIS WILL HELP YOU...

Step-by-step explanation:

Answered by streetburner
1

Step-by-step explanation:

To prove : sec θ + tan θ = 2x

secϴ = x + 1/4x …….(1)

tan²ϴ = sec²ϴ -1

tan²ϴ =  (x + 1/4x)² -1  

[From (1)]

tan²ϴ = x² + 1/16x² +½ -1

[ (a+b)² = a² + 2ab +b²]

tan²ϴ = x² + 1/16x² - ½

tan²ϴ = (x - 1/4x)²

[a² +b²-2ab = (a-b)²]

tanϴ = ±(x - 1/4x)

[Taking square roots both sides]

tanϴ = (x - 1/4x) or - (x - 1/4x)

When tanϴ =  (x - 1/4x), then  

secϴ +tanϴ = x +1/4x + x -1/4x = 2x

[From ( 1 )]

secϴ +tanϴ = 2x

When tanϴ = - (x - 1/4x), then  

secϴ +tanϴ = (x +1/4x) -( x -1/4x )  

 [From (1)]

=  x +1/4x - x + 1/4x   

= 1/4x + 1/4x = 2/4x = 1/2x

secϴ +tanϴ = 1/2x

Similar questions
Math, 1 year ago