pls answer fast ..
.....
Attachments:

Answers
Answered by
3
a=(3+√5)/2
1/a = 1/[(3+√5)/2]
=> 1/a = 2/(3+√5)
=> 1/a = 2(3-√5)/(3+√5)(3-√5)
rationalizing the denominator
=> 1/a = (6-2√5)/3²-(√5)²
=> 1/a = (6-2√5)/9-5
=> 1/a = (6-2√5)/4
(a+1/a)² = a²+1/a ²+2
=> [(3+√5)/2 + (6-2√5)/4] = a²+1/a²+2
=> [2(3+√5)/(2)2 + (6-2√5)/4] = a²+1/a²+2
Making denominator equal
=> (6+2√5+6-2√5)/4 = a²+1/a²+2
=> 12/4 = a²+1/a²+2
=> 3 = a²+1/a²+2
=> 3-2 = a²+1/a²
=> 1 = a²+1/a²
1/a = 1/[(3+√5)/2]
=> 1/a = 2/(3+√5)
=> 1/a = 2(3-√5)/(3+√5)(3-√5)
rationalizing the denominator
=> 1/a = (6-2√5)/3²-(√5)²
=> 1/a = (6-2√5)/9-5
=> 1/a = (6-2√5)/4
(a+1/a)² = a²+1/a ²+2
=> [(3+√5)/2 + (6-2√5)/4] = a²+1/a²+2
=> [2(3+√5)/(2)2 + (6-2√5)/4] = a²+1/a²+2
Making denominator equal
=> (6+2√5+6-2√5)/4 = a²+1/a²+2
=> 12/4 = a²+1/a²+2
=> 3 = a²+1/a²+2
=> 3-2 = a²+1/a²
=> 1 = a²+1/a²
Bittusomkuwar:
Great
Similar questions