Math, asked by darpanapatil9, 7 months ago

pls answer it fast need correct answer​

Attachments:

Answers

Answered by GovindRavi
2
hope this help......
Attachments:
Answered by Anonymous
2

GIVEN :-

 \rm{( - 5) ^{m - 1} } \:  \div ( - 5) = ( - 5) ^{ - </u><u>8</u><u>}

TO FIND :-

 \rm{ value \: of \: m \: }

SOLUTION :-

  \implies \: \rm{( - 5) ^{m - 1} } \:  \div ( - 5) = ( - 5) ^{ - </u><u>8</u><u>}

  \implies\rm{ \frac{( - 5) ^{m - 1}} {( - 5) ^{2} \:  \:  \:  \: } = ( - 5) ^{ - </u><u>8</u><u>} }

 \implies

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bold{ \boxed{  { \frac{ {a}^{m} }{ {a}^{n} } \:  =  \: a ^{m - n} }}}

 \implies \rm{  ({ - 5})^{m - 1 - 2} } = ( -  {5})^{ - </u><u>8</u><u>}

 \implies \rm{  ({ - 5})^{m - 3} } = ( -  {5})^{ - </u><u>8</u><u>}

 \implies \rm{  m \:  - 3 =  - </u><u>8</u><u>}

 \implies \boxed{ \boxed { \rm { m \:  =  </u><u>-</u><u>5</u><u>}}}

OTHER INFORMATION

Basic formulas in Powers and Roots

Some basic formulas used to solve questions on exponents are

  • (am)n = (an)m = amn

  • am.an = am+n

  • a-m = 1/am

  • am/an = am-n = 1/an-m

  • (ab)n = anbn

  • (a/b)n = an/bn

  • aⁿ = 1 ( where n = 0 )
Similar questions