Math, asked by zikrajsayyed23, 3 months ago

pls answer it's urgent​

Attachments:

Answers

Answered by AstroPaleontologist
4

Question:-

 \dfrac{ (\sqrt{x})^{ \frac{3}{5} }  \times ( \sqrt{x})^ \frac{2}{5}   + 2 \sqrt{x}  }{2( \sqrt{x})^ \frac{2}{3} \times  {( \sqrt{x} )}^{ \frac{1}{3} }  +  \sqrt{x}   }

Let us solve numerator first then the denominator,

Numerator:-

( \sqrt{x})^{ \frac{3}{5} }  \times  {( \sqrt{x}) }^{ \frac{2}{5}  }  + 2 \sqrt{x}

Applying BODMAS rule - Brackets of Division Multiplication Addition Subtraction.

This is the order in which operations are performed

 {a}^{m}  \times  {a}^{n}  =  {a}^{m + n}

 {( \sqrt{x} )}^{ \frac{3}{5}  +  \frac{2}{5}  }  + 2 \sqrt{x}

 {( \sqrt{x}) }^{ \frac{5}{5} }  + 2 \sqrt{x}

 \sqrt{x}  + 2 \sqrt{x}  = 3 \sqrt{x}

Denominator:-

 2{( \sqrt{x}) }^{ \frac{2}{3} }  \times  {( \sqrt{x}) }^{ \frac{1}{3} }  +  \sqrt{x}

2 \times  {( \sqrt{x}) }^{ \frac{2}{3} }  \times  {( \sqrt{x}) }^{ \frac{1}{3} }  +  \sqrt{x}

Applying the exponent law again,

2 \times  {( \sqrt{x}) }^{ \frac{2}{3}  +  \frac{1}{3} }  +  \sqrt{x}

2 \times ( \sqrt{x})^{ \frac{3}{3} }  +  \sqrt{x}

2 \sqrt{x}  +  \sqrt{x}  = 3 \sqrt{x}

Hence now substitute these in the numerator and denominator,

 \dfrac{3 \sqrt{x} }{3 \sqrt{x} }  = 1

Option (2) 1 is correct

Hope it helps!

Happy day!

Answered by StormEyes
5

\sf \Large Solution!!

Before solving this question, you should know the product rule and the quotient rule of exponents.

Product rule of exponents → \sf m^{a}\times m^{b}=m^{a+b}

Quotient rule of exponents → \sf \dfrac{m^{a}}{m^{b}}=m^{a-b}

\sf \to \dfrac{(\sqrt{x})^{\frac{3}{5}}\times (\sqrt{x})^{\frac{2}{5}}+2\sqrt{x}}{2(\sqrt{x})^{\frac{2}{3}}\times (\sqrt{x})^{\frac{1}{3}}+\sqrt{x}}

\sf \to \dfrac{(\sqrt{x})^{\frac{3}{5}+\frac{2}{5}}+2\sqrt{x}}{2(\sqrt{x})^{\frac{2}{3}+\frac{1}{3}}+\sqrt{x}}

\sf \to \dfrac{(\sqrt{x})^{\frac{3+2}{5}}+2\sqrt{x}}{2(\sqrt{x})^{\frac{2+1}{3}}+\sqrt{x}}

\sf \to \dfrac{(\sqrt{x})^{\frac{\cancel{5}}{\cancel{5}}}+2\sqrt{x}}{2(\sqrt{x})^{\frac{\cancel{3}}{\cancel{3}}}+\sqrt{x}}

\sf \to \dfrac{\sqrt{x}+2\sqrt{x}}{2\sqrt{x}+\sqrt{x}}

\sf \to 1

We have to select 2 alternatives. We have the answer 1. We know that if a base has a power 0, the answer is 1. Paying attention to the first option, we observe that the whole power is 0.

(√x)⁰ = 1

\sf \large Correct\:options:-

\blue{\sf \to (1)\:(\sqrt{x})^{0}}

\blue{\sf \to (2)\:1}

Similar questions