Math, asked by nithin2662, 1 year ago

pls answer quickly.......​

Attachments:

Anonymous: Mate, may be there is slightly a ± mistake

Answers

Answered by Anonymous
4

HEYA \:  \\  \\ required \: quadratic \: equation \: is \:  \\  \\ x {}^{2}  + (sum \: of \: roots \: )x + (product \: of \: roots) = 0 \\  \\ here \:  \: sum \: of \: roots \:  = ( \alpha {}^{2}  +  \beta  {}^{2} ) \div  \alpha  \beta  \\ and \\ product \: of \: roots \:  =  \:  \: 1 \\  \\ ( \alpha  +  \beta ) =  - p \:  \:  \: (given \: ) \\ cubing \: on \: both \: sides \: we \: have \\  \\ ( \alpha  +  \beta ) {}^{3}  =  - p {}^{3}  \\  \\  \alpha  {}^{3}  +  \beta  {}^{3}  + 3 \alpha  \beta ( \alpha  +  \beta ) =  - p {}^{3}  \\  \\ 3 \alpha  \beta  =  (- p {}^{3}  - q)  \div ( - p) \\  \\ 3 \alpha  \beta  = (p {}^{3}  + q) \div p \\  \\  \alpha  \beta  = (p {}^{3}  + q) \div 3p  .....(i)\\  \\  (\alpha  +  \beta ) {}^{2}  = p {}^{2}  \\  \\  \alpha  {}^{2}  +  \beta  {}^{2}  = (p {}^{2}  - 2 \alpha  \beta ) \\  \\ divide \:  \: both \: by \:  \alpha  \beta  \\  \\ ( \alpha  {}^{2}  +  \beta  {}^{2} ) \div ( \alpha  \beta ) = (p {}^{2}  \div ( \alpha  \beta) - 2) \\  \\ ( \alpha  {}^{2}  +  \beta  {}^{2} ) \div ( \alpha  \beta ) = (p { }^{3}   - 2 q) \div (p {}^{3}    +  q) \\  \\ so \: required \: quadratic \: equation \: is \\  \\ x {}^{2}(p {}^{3}   + q) + (p {}^{3}   - 2 q)x + (p {}^{3}  + q) = 0

Similar questions