Math, asked by pratyushsuryawanshi1, 9 months ago

Pls answer. The correct answer gets marked as brainliest.

Attachments:

Answers

Answered by Mihir1001
3

PROVED !!

Answer:

\LARGE\bold{LHS}

\LARGE{ =  \frac{ {3}^{n}  +  {3}^{n - 1} }{ {3}^{n + 1}  -  {3}^{n} } }

\LARGE{ =  \frac{ {3}^{(n)}  +  {3}^{(n - 1)} }{ {3}^{(n + 1)}  -  {3}^{(n)} } }

\LARGE{ =  \frac{ {3}^{n}  +  \frac{ {3}^{n} }{ {3}^{1} } }{( {3}^{n}  \times  {3}^{1} ) -  {3}^{n} } }—————\Large{ \left[  \because  \frac{ {x}^{a} }{ {x}^{b} }  =  {x}^{(a - b)}  \:  \: and \:  \:  {x}^{a}  \times  {x}^{b}  =  {x}^{(a + b)}  \right] }

\LARGE{ =  \frac{ {3}^{n}  +  \frac{ {3}^{n} }{3} }{( {3}^{n}  \times 3) -  {3}^{n} } }

\LARGE{ =  \frac{ {3}^{n}  \left( 1 +  \frac{1}{3}  \right) }{ {3}^{n} (3 - 1)} }——————[ taking  {3}^{n} as common both in numerator and denominator ]

\LARGE{ =  \frac{ \cancel{ {3}^{n} }  \left( 1 +  \frac{1}{3}  \right) }{ \cancel{ {3}^{n} } (3 - 1)} }

\LARGE{ =  \frac{ \left( 1 +  \frac{1}{3}  \right) }{(3 - 1)} }

\LARGE{ =  \frac{ \left(  \frac{3 + 1}{3}  \right) }{2} }

\LARGE{ =  \frac{ \left(  \frac{4}{3}  \right) }{2} }

\LARGE{ =  \frac{4}{3}  \times  \frac{1}{2} }

\LARGE{ =  \frac{ \cancel{4}  \:  {}^{2} }{3}  \times  \frac{1}{ \cancel{2}  \: _1} }

\LARGE{ =  \frac{2}{3}  \times  \frac{1}{1} }

\LARGE{ =  \frac{2}{3} }

\LARGE\bold{ = RHS}

Similar questions