Math, asked by Dhruvi2212, 1 month ago

pls answer this, correct ans will mark as brainliest​

Attachments:

Answers

Answered by Aryan0123
26

Question:

If ΔDEF ∼ ΔABC, area of ΔDEF = 4/9 (Area of ΔABC) then BC/EF = ?

\\

Answer:

BC/EF = 3/2

\\

Concept used:

\maltese \: \: \boxed{\tt{\dfrac{Area \: of \: \triangle ABC}{Area \: of \: \triangle DE F}=\bigg(\dfrac{AB}{DE}\bigg)^{2}=\bigg(\dfrac{BC}{EF}\bigg)^{2}=\bigg(\dfrac{AC}{DF}\bigg)^{2}}}

\\

Step-by-step explanation:

According to the question,

\sf{Area \: of \: \triangle DE F=\dfrac{4}{9}\:(Area \: of \: \triangle ABC)}\\\\

Dividing by (Area of ΔABC) on both sides,

\implies \sf{\dfrac{Area \: of \: \triangle DE F}{Area \: of \: \triangle ABC}=\dfrac{4}{9}}\\\\

The question is asked to find BC/EF. So let's take reciprocal on both the sides.

\implies \sf{\dfrac{Area \: of \: \triangle ABC}{Area \: of \: \triangle DE F}=\dfrac{9}{4}}\\\\

Now,

\implies \sf{\dfrac{Area \: of \: \triangle ABC}{Area \: of \: \triangle DE F}=\bigg(\dfrac{BC}{EF}\bigg)^{2}}\\\\

\implies \sf{\dfrac{9}{4}=\bigg(\dfrac{BC}{EF}\bigg)^{2}}\\\\

\implies \sf{\bigg(\dfrac{BC}{EF}\bigg)^{2}=\dfrac{9}{4}}\\\\

\implies \sf{\dfrac{BC}{EF}=\sqrt{\dfrac{9}{4}}}\\\\

\implies \sf{\dfrac{BC}{EF}=\dfrac{3}{2}}\\\\

\therefore \: \underline{\boxed{\bf{\dfrac{BC}{EF}=\dfrac{3}{2}}}}

Answered by GraceS
27

\sf\huge\bold{Answer:}

Given :

  • ∆DEF ∼∆ABC
  • ar.∆DEF=4/9(ar.∆ABC)

To find :

  • BC/EF

Solution :

We know that when two triangles are similar, then square of ratio of corresponding sides of two triangles is equal to the ratio of their areas.

 \boxed{ \tt \red{ \frac{ar. \triangle \: DEF }{ar. \triangle \:  ABC}  =  \bigg(  \frac{DE }{AB} \bigg) {}^{2}  = \bigg( \frac{EF}{BC}\bigg) {  }^{2}   = \bigg( \frac{DF}{AC}\bigg) {  }^{2} }} \\

Given that

:⟶ \tt\ ar. \triangle \: DEF =  \frac{4}{9}(ar. \triangle \: ABC) \\

\tt {:⟶ \frac{ar. \triangle \: DEF }{ar. \triangle \:  ABC}  = \frac{4}{9} } \\

Doing reciprocal, we get

\tt {:⟶ \frac{ar. \triangle \:ABC  }{ar. \triangle \: DEF }  = \frac{9}{4} }...(i) \\

Now, we know

\tt {:⟶ \frac{ar. \triangle \: DEF }{ar. \triangle \:  ABC}  = \bigg( \frac{EF}{BC}\bigg) {  }^{2} } \\

Reciprocal gives :

\tt {:⟶ \frac{ar. \triangle \:ABC  }{ar. \triangle \: DEF }  = \bigg( \frac{BC}{EF}\bigg) {  }^{2} }...(ii)  \\

Comparing (i) & (ii)

\tt {:⟶ \frac{ar. \triangle \:ABC  }{ar. \triangle \: DEF }  = \bigg( \frac{BC}{EF}\bigg) {  }^{2} }  =  \frac{9}{4}  \\

We know that 9=3² & 4=2²

So,

\tt { :⟶ \bigg( \frac{BC}{EF}\bigg) {  }^{2} }   =  \frac{ {3}^{2} }{ {2}^{2} } \\

Similarly,

\tt { :⟶ \bigg( \frac{BC}{EF}\bigg) {  }^{2} }   =   \bigg(\frac{ {3}}{ {2} }  \bigg) {}^{2} \\

Simplifying by cutting square on both sides :

\tt {:⟶  \bigg( \frac{BC}{EF}\bigg)  \cancel{{  }^{2}} }   =   \bigg(\frac{ {3}}{ {2} }  \bigg)  \cancel{{}^{2}} \\

\tt {:⟶  \bigg( \frac{BC}{EF}\bigg)     =   \bigg(\frac{ {3}}{ {2} }  \bigg)  }  \\

 \boxed{  \underline{\tt  \bold\purple{\frac{BC}{EF}=\frac{3}{2}}}} \\

Similar questions