pls answer thus urgently
Answers
(2-a)³+ (2 - b)³ + (2 - c)³ - 3(2 - a)(2 - b)(2 - c)
Using the identity,
x³ + y³:+ z³ - 3xyz =
(x + y + z)(x² + y² + z² - xy - yz - xz)
Assuming, (2 - a) as x
(2 - b) as y and (2 - c) as z
We get,
(2 - a)³ + (2 - b)³ + (2 - c)³ - 3(2 - a)(2 - b)(2 - c)
= (2 - a + 2 - b + 2 - c)[ (2 - a)² + (2- b)² + (2 - c)² - (2 - a)(2 - b) - (2 - b)(2 - c)- ( 2 - a)(2 - c) ]
=> [2 + 2 + 2 -(a + b + c)][ (2 - a)² + (2 - b)² + (2 - c)² - (2 - a)(2 - b) - (2 - b)(2 - c) - (2 - a)(2 - c) ]
since a + b + c = 6, we can write,
(6 - 6)[ (2 - a)² + (2 - b)² + (2 - c)² - (2 - a)(2 - b) - (2 - b)(2 - c) - (2 - a)(2 - c) ]
=> 0[ (2 - a)² + (2 - b)² + (2 - c)² - (2 - a)(2 - b) - (2 - b)(2 - c) - (2 - a)(2 - c) ]
= 0
Since 0 is multiplied, whole of the product will be equal to 0
Hence your answer is 0
hi there
Using the identity, x³ + y³+ z³ - 3xyz = ( x + y + z )( x² + y² + z² - xy - yz - zx )
let us take ( 2 - a ) = x (2 - b ) = y and ( 2 - c ) = z
We get, ( 2 - a )³ + ( 2 - b )³ + ( 2 - c )³ - 3( 2 - a )( 2 - b )( 2 - c )
( 2 - a + 2 - b + 2 - c )[ (2 - a )² + ( 2- b )² + ( 2 - c )² - ( 2 - a )( 2 - b ) - ( 2 - b )( 2 - c )- ( 2 - a )( 2 - c) ]
[2 + 2 + 2 -(a + b + c)] [ ( 2 - a )² + ( 2 - b )² + ( 2 - c )² - ( 2 - a )( 2 - b ) - ( 2 - b )( 2 - c ) - (2 - a )( 2 - c ) ]
(6 - 6) [ ( 2 - a )² + ( 2 - b )² + ( 2- c )² - ( 2 - a )(2 - b) - (2 - b)(2 - c) - ( 2 - a )( 2 - c )
0[ (2 - a)² + (2 - b)² + (2 - c)² - (2 - a)(2 - b) - (2 - b)(2 - c) - (2 - a)(2 - c) ]= 0
0 multiplied by any number te product will also be 0
#bebrainly
Read more on Brainly.in - https://brainly.in/question/5330213#readmore