Math, asked by sulagnadas18, 3 months ago

pls answer to my question​

Attachments:

Answers

Answered by assingh
61

Topic :-

Exponents and Powers

To Prove :-

\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}=1

Formula to be Used :-

x^a \times x^b = x^{a+b}

(x^a)^b=x^{ab}

Solution :-

Solving LHS,

\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}

Using Formula,

\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}

\dfrac{x^{m+n+n+l+l+m}}{(x^{m+n+l})^2}

\dfrac{x^{2m+2n+2l}}{x^{2(m+n+l)}}

\dfrac{x^{2m+2n+2l}}{x^{2m+2n+2l}}

1

RHS,

1

We observe that LHS = RHS.

Hence, Proved !!

Additional Formulae :-

\dfrac{x^a}{x^b}=x^{a-b}

x^0=1

x^a \times y^a = (xy)^a


Asterinn: Great!
Answered by telex
186

Question :-

 \underline{show \:  \: that \:  :}  \\ \\  (i) \:  \:  \frac{ {x}^{m + n} \times  {x}^{n + l}  \times  {x}^{l + m}  }{( {x}^{m} \times  {x}^{n}   \times  {x}^{l} )^{2}}  = 1

____________________

Solution :-

To Find :-

\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}=1

Formula Used :-

\sf{x^a \times x^b = x^{a+b}}

\sf\implies(x^a)^b=x^{ab}

Calculation :-

Firstly, Solving Left Hand Side (LHS),

\sf\implies\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}

Using the Formula,

\sf\implies\dfrac{x^{m+n} \times x^{n+l} \times x^{l+m}}{(x^m \times x^n \times x^l)^2}

\sf\implies\dfrac{x^{m+n+n+l+l+m}}{(x^{m+n+l})^2}

\sf\implies\dfrac{x^{2m+2n+2l}}{x^{2(m+n+l)}}

\sf\implies\dfrac{x^{2m+2n+2l}}{x^{2m+2n+2l}}

\bf\implies \red1

Now, Solving Right Hand Side (RHS),

\bf\implies \red1

Observation :-

Since, Left Hand Side (LHS) = Right Hand Side (RHS)

Hence, Proved.

____________________

Similar questions