Math, asked by Anonymous, 7 months ago

Pls don't give me irrevalant ans pls give proper ans​

Attachments:

Answers

Answered by MaIeficent
7

Step-by-step explanation:

Question:-

Find the Value of a and b if:-

 \sf \dfrac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \dfrac{7 -  \sqrt{5} }{7 +  \sqrt{5} }  = a +  \dfrac{7}{11}  \sqrt{5} \:  b

Solution:-

 \sf LHS = \dfrac{7 +  \sqrt{5} }{7 -  \sqrt{5} }  -  \dfrac{7 -  \sqrt{5} }{7 +  \sqrt{5} }

\sf\underline{ Rationalising \: the \: denominator:-}

 \sf  =   \Bigg(\dfrac{7 +  \sqrt{5} }{7 -  \sqrt{5} } \times  \dfrac{7 +  \sqrt{5} }{7 +  \sqrt{5} } \Bigg)   -   \Bigg(\dfrac{7 -  \sqrt{5} }{7 +  \sqrt{5} } \times  \dfrac{7 -  \sqrt{5} }{7 -  \sqrt{5} }  \Bigg)

 \sf  =   \dfrac{(7 +  \sqrt{5} )^{2} }{7 ^{2}  -  (\sqrt{5}) ^{2}  }  -  \dfrac{(7 -  \sqrt{5})^{2}  }{ {7}^{2}   -  { (\sqrt{5} )}^{2} }

 \sf  =   \dfrac{ {7}^{2} +  {( \sqrt{5}) }^{2}  + 2(7)( \sqrt{5})   }{49 - 5  }  - \dfrac{ {7}^{2} +  {( \sqrt{5}) }^{2}   - 2(7)( \sqrt{5})   }{49 - 5  }

 \sf  =   \dfrac{ 49 +  5+ 14 \sqrt{5} }{44}  - \dfrac{ 49+ 5 -14\sqrt{5} }{44 }

 \sf  =   \dfrac{54+ 14 \sqrt{5} }{44}  - \dfrac{54 -14\sqrt{5} }{44 }

 \sf  =   \dfrac{54+ 14 \sqrt{5}  - (54 - 14 \sqrt{5} )}{44}

 \sf  =   \dfrac{54+ 14 \sqrt{5}  - 54  + 14 \sqrt{5} }{44}

 \sf =  \dfrac{ 2(14 \sqrt{5})  }{44}=    \dfrac{ 28 \sqrt{5}  }{44}

 \sf  =   \dfrac{ 7 \sqrt{5}  }{11} =  0 + \dfrac{ 7 \sqrt{5}  }{11}

 \sf  comparing \:   \:  0 + \dfrac{ 7 \sqrt{5}  }{11}   \:  \:  with \:  \: a +  \dfrac{7 }{11} \sqrt{5}   \:  b

 \sf a = 0 \: \: ,  \: b = 1

\Large \dashrightarrow  \underline{  \boxed{\therefore\textsf{ \textbf{a = 0 \:  , \: \: b = 1}} }}

Answered by Anonymous
2

a=0,b=1

Hope it helps. ....

Similar questions