Math, asked by aryashukla11, 11 months ago

pls explain me last 2 steps...no scamming.... otherwise I'll report the answer....​

Attachments:

Answers

Answered by mysticd
0

Answer:

 \green { \frac{ 3}{5} }

Step-by-step explanation:

 \frac{10\times 5^{n+1} + 25 \times 5^{n} }{3\times 5^{n+2} + 10\times 5^{n+1}}

 = \frac{2\times 5^{1}\times 5^{n+1} + 5^{2} \times 5^{n} }{3\times 5^{n+2} + 2\times 5^{1}\times 5^{n+1}}

 = \frac{2\times  5^{1+n+1} + 5^{2+n}}{3\times 5^{n+2} + 2\times 5^{1+n+1}}

 \boxed { \pink { a^{m} \times a^{n} = a^{m+n}}}

 = \frac{2\times  5^{n+2} + 1 \times 5^{n+2}}{3\times 5^{n+2} + 2\times 5^{n+2}}

 Take \: 5^{n+2} \: common , \:we \:get

 = \frac{ 5^{n+2} ( 2+1) }{5^{n+2} ( 3+2 ) }

 = \frac{ (2+1)}{(3+2)}

 = \frac{ 3}{5}

Therefore.,

 \red {\frac{10\times 5^{n+1} + 25 \times 5^{n} }{3\times 5^{n+2} + 10\times 5^{n+1}}}

 \green {= \frac{ 3}{5} }

•••♪

Similar questions