Math, asked by prabhupadasrila0, 9 months ago

pls friend help.me ​

Attachments:

Answers

Answered by niharikam54
4

Answer:

hope this helps you.Mark me as BRAINLIEST if you got the correct answer

Attachments:
Answered by kaushik05
37

 \huge \mathfrak{solution} \\

To Differentiate:

 y = ({ {x}^{2} + 1 })^{ \sin \: x}  \\

Take Log both sides ,we get

 \star \:  log(y)  =  log( ({ {x}^{2}  + 1})^{ \sin \: x} )  \\  \\  \star \:  log(y)  =  \sin  x \:  \:  log( {x}^{2}  + 1)

Now Differentiate w.r.t X

 \star \:  \frac{d}{dx}  log(y)  =  \frac{d}{dx} ( \sin x \:  log( {x}^{2} + 1 ) ) \\  \\  \star \:  \frac{1}{y}  \frac{dy}{dx}  =  \sin x \:  \frac{d}{dx}  log( {x}^{2} + 1 )  +  log( {x}^{2} + 1 )  \frac{d}{dx} ( \sin x) \\  \\  \star \:  \frac{1}{y}  \frac{dy}{dx}   =  \sin x \frac{1}{ {x}^{2} + 1 } (2x + 0) +   log( {x}^{2}  + 1) ( \cos x) \\  \\ \star \:  \frac{1}{y}  \frac{dy}{dx}  =  \frac{2x \sin x}{ {x}^{2} + 1 }  +  \cos x \:  log( {x}^{2} + 1 )  \\  \\  \star \:  \frac{dy}{dx}  = y( \frac{2x \:  \sin x}{ {x}^{2} + 1 }  +  \cos x \:  log( {x}^{2} + 1 ) ) \\  \\  \star \:  \frac{dy}{dx}  =  {( {x}^{2} + 1) }^{ \sin x} ( \frac{2x \sin x}{ {x}^{2} + 1 }  +  \cos x \:  log( {x}^{2} + 1) )  \\

Formula

  \star \ \bold{ \frac{d}{dx} u.v = u \:  \frac{dv}{dx}  + v \:  \frac{du}{dx}}  \\  \\  \star \bold{ \frac{d}{dx}  \sin \: x =  \cos x}

Similar questions