Math, asked by pranishkabansal, 4 months ago

pls give the solution for this one​

Attachments:

Answers

Answered by ravi2303kumar
0

Answer:

Step-by-step explanation:

To prove: \frac{a^{-1}}{a^{-1}+b^{-1}}  + \frac{a^{-1}}{a^{-1}-b^{-1}}  = \frac{2b^2}{b^2-a^2}

take LHS

=  \frac{a^{-1}}{a^{-1}+b^{-1}}  + \frac{a^{-1}}{a^{-1}-b^{-1}}

= \frac{a^{-1}*(a^{-1}-b^{-1}) +  a^{-1}*(a^{-1}+b^{-1})} {(a^{-1}+b^{-1}) * (a^{-1}-b^{-1})}

= \frac{ a^{-2}-  a^{-1}*b^{-1} + a^{-2} +   a^{-1}*b^{-1} }{a^{-2} - b^{-2}}

= \frac{2*a^{-2}}{a^{-2}-b^{-2}}

= \frac{2}{a^2 ( \frac{1}{a^2} - \frac{1}{b^2} )}

= \frac{2}{ ( 1 - \frac{a^2}{b^2} )}

= \frac{2}{ (  \frac{b^2- a^2}{b^2} )}

= \frac{2b^2}{b^2-a^2}  = RHS

=> LHS = RHS

Hence proved

Similar questions