Math, asked by anitharamalingaiah, 6 months ago

pls guys can u give me 18 19 and 20 answer for reference 17 answer is also there in the pic pls guys give me the answer ​

Attachments:

Answers

Answered by MathsLover00
5

 \pink{z =  {( \frac{1}{3}  + 3i})^{3} } \\  \\ z =  { (\frac{1}{3} )}^{3}  + 3 { (\frac{1}{3}) }^{2} 3i + 3 \frac{1}{3}  {(3i)}^{2}  +  {(3i)}^{3}  \\  \\ z =  \frac{1}{27}  +3 i + 9 {i}^{2}  + 27 {i}^{3}  \\  \\ z =  \frac{1}{27}  + 3i - 9 - 27i \\  \\ z =  \frac{1}{27}   - 9 - 24i \\  \\ z =  \frac{1 - 243}{27}  - 24i \\  \\ z =  \frac{ - 242}{22}  - 24i

HOPE IT HELPS TO U

Answered by Asterinn
5

Solution of question 18 :-

 \implies \sf z = { ( \dfrac{1}{3}  + 3i \large)}^{3}

Where :- i = √-1

We know that :-

  \underline{\boxed{{  \large\bf ( a + b)}^{3} =   \large\bf{a}^{3} + {b}^{3} + 3 {a}^{2} b + 3a {b}^{2}   }}

Therefore :-

 \implies \sf { ( \dfrac{1}{3}  + 3i \large)}^{3}  =  { (\dfrac{1}{3}) }^{3}  +  {(3i)}^{3}  + 3 {( \dfrac{1}{3}) }^{2} 3i + 3 {(3i)  }^{2}  \dfrac{1}{3}

\implies \sf  \dfrac{1}{27} +  27{(i)}^{3}  + i + 9 {(i)  }^{2}

Now we know that :-

  • i² = -1
  • i³= -i

\implies \sf  \dfrac{1}{27}  -   27i  + i  - 9

\implies \sf  \dfrac{1}{27}   - 9-   26i

\implies \sf  \dfrac{1 - 243}{27}  -   26i

\implies \sf  \dfrac{ - 242}{27}   -   26i

Solution of question 19 :-

 \implies \sf z = { ( - 2 -  \dfrac{1}{3}i  )}^{3}

 \implies \sf z =  { (- 1)}^{3} { (  2  +   \dfrac{1}{3}i  )}^{3}

 \implies \sf z =  - { ( 2  +  \dfrac{1}{3}i  )}^{3}

We know that :-

\underline{\boxed{{  \large\bf ( a + b)}^{3} =   \large\bf{a}^{3} + {b}^{3} + 3 {a}^{2} b + 3a {b}^{2}   }}

 \implies \sf - ( {2  +  \dfrac{1}{3}i  )}^{3}   = - (  \:  \:  \:  { 2 }^{3}  +  {( \dfrac{1}{3}i)}^{3}  + 3 {( 2) }^{2} \dfrac{1}{3} i + 3 {(\dfrac{1}{3}i)  }^{2}  2 \:   \: \: )

 \implies \sf  - (    8  +   \dfrac{1}{27} {(i)}^{3}  + 4  i +  {\dfrac{2}{3} {i}^{2}   } )

Now we know that :-

  • i² = -1
  • i³= -i

 \implies \sf  - (    8  -   \dfrac{1}{27} i+ 4  i  -  {\dfrac{2}{3} } )

 \implies \sf   -   8   +   \dfrac{1}{27} i -  4  i   +   {\dfrac{2}{3} }

\implies \sf     {\dfrac{2}{3} } -   8   +   \dfrac{1}{27} i -  4  i

\implies \sf     {\dfrac{2 - 24}{3} }    +   \dfrac{i - 108i}{27}

\implies \sf     {\dfrac {- 22}{3} }     -  \dfrac{107i}{27}

Solution of question 20 :-

 \implies \sf \dfrac{(3 +  i\sqrt{5})(3  -   i\sqrt{5}) }{( \sqrt{3}  +  i\sqrt{2}) -( \sqrt{3}   - i\sqrt{2}) }

We know that :-

\underline{\boxed{{  \large\bf( a+ b)(  a-  b ) =  {a}^{2}   -  {b}^{2} }}}

therefore :-

 \implies \sf \dfrac{( {3)}^{2}   -    {(i\sqrt{5})}^{2}  }{\sqrt{3}  +  i\sqrt{2}-\sqrt{3}    +  i\sqrt{2} }

 \implies \sf \dfrac{9  -   5 {(i)}^{2}  }{ 2\sqrt{2} i   }

Now we know that :-

  • i² = -1

 \implies \sf \dfrac{9  + 5 }{ 2\sqrt{2} i   }

 \implies \sf \dfrac{14  }{ 2\sqrt{2} i   }

 \implies \sf \dfrac{7 }{ \sqrt{2}  \: i   }

 \implies \sf \dfrac{7 }{ \sqrt{2}  \: i   }   \times \dfrac{ \sqrt{2}  \: i }{ \sqrt{2}  \: i   }

\implies \sf  -  \dfrac{7 \sqrt{2}  \: i }{ {2}    }

Similar questions