Math, asked by athmanavs, 4 months ago

pls help its urgent​

Attachments:

Answers

Answered by SparklingBoy
4

Answer:

To prove:-

  \sqrt{ \dfrac{1 +  {sin}^{2} \theta. {sec}^{2} \theta}{1 +  {cos}^{2}\theta. {cosec}^{2}\theta} } = tan \theta

Properties used:-

sec\theta =  \dfrac{1}{cos\theta}  \\  \\ cosec\theta =  \dfrac{1}{sin\theta}  \\  \\ 1 +  {tan}^{2} \theta =  {sec}^{2} \theta \\  \\ 1 +  {cot}^{2} \theta =  {cosec}^{2} \theta

LHS:-

\sqrt{ \dfrac{1 +  {sin}^{2} \theta. {sec}^{2} \theta}{1 +  {cos}^{2}\theta. {cosec}^{2}\theta} }  \\  \\  = \sqrt{ \dfrac{1 +  {sin}^{2} \theta.  \dfrac{1}{ {cos }^{2}  \theta} }{1 +  {cos}^{2}\theta.  \dfrac{1}{ {sin}^{2}\theta} } }  \\  \\  = \sqrt{ \dfrac{1 +   {tan}^{2}\theta}{1 +  {cot}^{2}\theta} }  \\  \\  =  \sqrt{ \frac{sec {}^{2}\theta}{ {cosec}^{2}\theta}}  \\  \\  =  \frac{sec \theta}{cosec \theta}  \\  \\  =  \dfrac{ \dfrac{1}{cos \theta } }{ \dfrac{1}{sin\theta }} \\  \\  =  \frac{sin \theta}{cos\theta}  \\  \\  = tan\theta

Similar questions