Math, asked by kuikui, 6 months ago

pls help me for this question​

Attachments:

Answers

Answered by anjukrishusachin
0

Step-by-step explanation:

Given \:  Surface \:  area  \: of  \: a  \: cubical  \: box= \: 24 {(2x - 1)}^{2}  {cm}^{2}  \\ \: because  \:  Surface \:  area  \: of  \: a  \: cubical  \: box= \: 6 {a}^{2}  \\ so \: 6 {a}^{2}  = 24 {(2x - 1)}^{2}  {cm}^{2} \\  =  {a}^{2}  =  \frac{24}{6} {(2x - 1)}^{2}  {cm}^{2} \\  = {a}^{2}  =  4 {(2x - 1)}^{2}  {cm}^{2} \\  = a =  \sqrt{4 {(2x - 1)}^{2}  {cm}^{2}}  \\ then \:  \\ side \: of \: cubical \: box \: (a) =  \: 2(2x - 1) \: cm \\ then \:  \:  \: volume \: of \: cubical \: box \:  =  {side}^{3}  \\  =  {(2(2x - 1) \: cm)}^{3}  \\  = 8 \times ({(2x)}^{3}  -  {(1)}^{3}  - 3 \times  {(2x)}^{2}  \times 1 + 3 \times 2x \times  {1}^{2} )  {cm}^{3} \\  = 8( {8x}^{3}  - {12x}^{2}  + 6x - 1) {cm}^{3}  \\  \\  \\ or \\  \\ volume \: of \: cubical \: box \:  =  \:  ({64x}^{3}  -  {96x}^{2}  + 48x - 8) {cm}^{3}

hope it helps you

please mark as brainliest

Similar questions