Math, asked by dheerajnimesh007, 4 months ago

pls help me
it is hard to understand
if you solve this answer I will give 50 points to you​

Attachments:

Answers

Answered by Anonymous
15

Question :-

\sf\dfrac{ {3}^{ - 3}  \times  {6}^{2} \times  \sqrt{98}  }{ {5}^{2} \times \sqrt[3]{ \frac{1}{25}} \times {15}^{ \frac{ - 4}{3} } \times {3}^{\frac{1}{3} }}

Answer :-

LHS :-

\implies\sf \dfrac{ {3}^{ - 3}  \times  {6}^{2} \times  \sqrt{98}  }{ {5}^{2}  \times  \sqrt[3]{ \frac{1}{25}} \times  {15}^{ \frac{ - 4}{3} }  \times  {3}^{ \frac{1}{3} }  }

\implies\sf\dfrac{ {3}^{ - 3}  \times  {(3 \times 2)}^{2} \times \sqrt{7 \times 7 \times 2}  }{ {5}^{2}  \times \sqrt[3]{ \frac{1}{ {5}^{2} }} \times  {(5 \times 3)}^{ \frac{ - 4}{3} }  \times  {3}^{ \frac{1}{3}}}

\implies\sf \dfrac{ {3}^{ - 3} \times  {3}^{2} \times  {2}^{2} \times 7 \sqrt{2} }{ {5}^{2}  \times  \frac{1}{ {5}^{ \frac{2}{3} } } \times  {5}^{ \frac{ - 4}{3} }  \times 3 ^\frac{1}{3}  }

\implies\sf \dfrac{ {3}^{ - 3 + 2}  \times  {2}^{2} \times 7 \times  {2}^{ \frac{1}{2} }  }{ {5}^{2} \times  {5}^{ \frac{ - 2}{3} }  \times  {5}^{ \frac{ - 4}{3} }   \times  {3}^{ \frac{ - 4}{3} +  \frac{1}{3}  } }

\implies\sf \dfrac{ {3}^{ - 1}  \times 4 \times  \sqrt{2} \times 7 }{  {5}^{2 -  \frac{2}{3} -  \frac{4}{3}  }  \times  {3}^{ \frac{ - 3}{3} }  }

\implies\sf \dfrac{ \cancel{{3}^{ - 1}} \times 4 \times  \sqrt{2}  \times 7 }{ {5}^{2 -  \frac{6}{3} } \times \cancel{ {3}^{ - 1}  }}

\implies\sf \dfrac{28 \sqrt{2} }{ {5}^{2 - 2} }

\implies\sf \dfrac{28 \sqrt{2} }{ {5}^{0} }

\implies\sf 28 \sqrt{2}

\sf RHS = 28 \sqrt{2}

LHS = RHS

\begin{gathered}\boxed{\begin{minipage}{5 cm}\bf{\dag}\:\:\underline{\text{Law of Exponents :}}\\\\\bigstar\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\\bigstar\:\:\sf{(a^m)^n = a^{mn}}\\\\\bigstar\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\bigstar\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\\\bigstar\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{minipage}}\end{gathered}

Similar questions