Math, asked by Anonymous, 9 months ago

Pls help me to solve the problem ​

Attachments:

Answers

Answered by amansharma264
10

EXPLANATION.

 \sf :  \implies \:  \:  \dfrac{ \tan(a) }{ \sec(a) - 1 }  +  \dfrac{ \tan(a) }{ \sec(a)  + 1}  = 2 \csc(a)

\sf :  \implies \:  \frac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1}{ \cos(a) } - 1 } \:  \:  +  \:  \:  \frac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1}{ \cos(a) }  + 1}

\sf :  \implies \:  \dfrac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1 -  \cos(a) }{ \cos(a) } }  \:  \:  +  \:  \:  \: \dfrac{ \dfrac{ \sin(a) }{ \cos(a) } }{ \dfrac{1  +   \cos(a) }{ \cos(a) } }

\sf :  \implies \:  \dfrac{ \sin(a) }{  \cancel{\cos(a)} }  \times  \dfrac{  \cancel{\cos(a)} }{1 -  \cos(a) }  \:  \:  +  \:  \:  \dfrac{ \sin(a) }{  \cancel{\cos(a)} } \times  \dfrac{  \cancel{\cos(a)} }{1 +  \cos(a) }

\sf :  \implies \:  \dfrac{ \sin(a) }{1 -  \cos(a) }   \:  \: +  \:  \:  \:  \dfrac{ \sin(a) }{1 +  \cos(a) }

\sf :  \implies \:  \dfrac{ \sin(a) (1 +  \cos(a) ) +  \sin(a) (1 -  \cos(a) )}{(1 -  \cos(a) )(1 +  \cos(a)) }

\sf :  \implies \:   \dfrac{ \sin(a) (1 +  \cos(a)  + 1 -  \cos(a) )}{(1 -  \cos {}^{2} (a) )}

\sf :  \implies \:  \dfrac{ 2\sin(a) }{ \sin {}^{2} (a) }  =  \dfrac{2}{ \sin(a) }  = 2 \csc(a)

 \sf :  \implies \:  \green{{ \underline{formula \: used \: }}} \\  \\ \sf :  \implies \:  \tan(a)  =  \frac{ \sin(a) }{ \cos(a) }  \\  \\  \sf :  \implies \:  \sec(a)  =  \frac{1}{ \cos(a) }  \\  \\ \sf :  \implies \:  \csc(a)  =  \frac{1}{ \sin(a) }  \\  \\ \sf :  \implies \: 1 -  \cos {}^{2} (a)  =  \sin {}^{2} (a)

Answered by Darkrai14
4

To Prove:-

\rm\dfrac{\tan A}{\sec A -1} + \dfrac{\tan A}{ \sec A +1} = 2 \ cosec \ A

Solution:-

\rm\dfrac{\tan A}{\sec A -1} + \dfrac{\tan A}{ \sec A +1} = 2 \ cosec \ A

Take \tan A common.

\rm\dashrightarrow \tan A \Bigg ( \dfrac{1}{\sec A -1} + \dfrac{1}{ \sec A +1} \Bigg )= 2 \ cosec \ A

\rm\dashrightarrow \tan A \Bigg ( \dfrac{\sec A +1 + (\sec A - 1 )}{ (\sec A -1 ) ( \sec A +1 ) } \Bigg )= 2 \ cosec \ A

\rm\dashrightarrow \tan A \Bigg ( \dfrac{ 2 \sec A}{{ \sec }^2 A-1} \Bigg )= 2 \ cosec \ A  \qquad\qquad \bigg [ \because \ \ a^2-b^2 = (a-b)(a+b) \bigg ]

\rm\dashrightarrow \tan A \Bigg ( \dfrac{ 2 \sec A}{{\tan}^2 A} \Bigg )= 2 \ cosec \ A \qquad \qquad ...\Bigg [ \because \ \ {\sec}^2 A -1 = {\tan}^2 A \Bigg ]

\rm\dashrightarrow \dfrac{ 2 \sec A}{\tan A} = 2 \ cosec \ A

\rm\dashrightarrow \dfrac{ \frac{2}{\cos A}}{\frac{\sin A}{\cos A}} = 2 \ cosec \ A

\dashrightarrow\rm \dfrac{2}{\sin A} = 2 \ cosec \ A

\dashrightarrow \rm 2 \ cosec \ A= 2 \ cosec \ A

Similar questions