Math, asked by Anonymous, 2 months ago

pls help me to solve this problem ​

Attachments:

Answers

Answered by ZAYNN
16

Answer:

\sf\:If\:\dfrac{\cos^4x }{\cos^2y} + \dfrac{\sin^4x}{\sin^2y} = 1\sf, then\:find\:\dfrac{\cos^4y}{\cos^2x} + \dfrac{\sin^4y}{\sin^2x} = ?

\underline{\bigstar\:\textsf{According to the given Question :}}

:\implies\sf \dfrac{\cos^4x}{\cos^2y} + \dfrac{\sin^4x}{\sin^2y}=1\\\\\\:\implies\sf \dfrac{\cos^4x\sin^2y + \sin^4x\cos^2y}{\cos^2y\sin^2y}=1\\\\\\:\implies\sf \cos^4x\sin^2y + (\sin^2x)^2\cos^2y = \cos^2y\sin^2y\\\\\\:\implies\sf \cos^4x\sin^2y + (1 - \cos^2x)^2\cos^2y = \cos^2y\sin^2y\\\\\\:\implies\sf \cos^4x\sin^2y + (\cos^4x + 1 -  2\cos^2x)\cos^2y = \cos^2y\sin^2y\\\\\\:\implies\sf \cos^4x\sin^2y + \cos^4x\cos^2y + \cos^2y -  2\cos^2x\cos^2y = \cos^2y\sin^2y\\\\\\:\implies\sf \cos^4x(\sin^2y + \cos^2y) + \cos^2y - \cos^2y\sin^2y-  2\cos^2x\cos^2y = 0\\\\\\:\implies\sf \cos^4x(1) + \cos^2y(1 - \sin^2y) - 2\cos^2x\cos^2y = 0\\\\\\:\implies\sf \cos^4x + \cos^2y(\cos^2y) - 2\cos^2x\cos^2y = 0\\\\\\:\implies\sf \cos^4x + \cos^4y- 2\cos^2x\cos^2y = 0\\\\\\:\implies\sf (\cos^2x - \cos^2y)^2 = 0\\\\\\:\implies\sf \cos^2x - \cos^2y = 0\\\\\\:\implies\sf \cos^2x = \cos^2y\\\\\\:\implies\sf Likewise,  \:we\:get\: :\sin^2x = \sin^2y

\rule{200px}{.3ex}

\dashrightarrow\sf\:\: \dfrac{\cos^4y}{\cos^2x} + \dfrac{\sin^4y}{\sin^2x}\\\\\\\dashrightarrow\sf\:\: \dfrac{\cos^4y}{\cos^2y} + \dfrac{\sin^4y}{\sin^2y}\\\\\\\dashrightarrow\sf\:\: \dfrac{(\cos^2y)^{2}}{\cos^2y} + \dfrac{(\sin^2y)^{2}}{\sin^2y}\\\\\\\dashrightarrow\sf\:\: \cos^2y +\sin^2y\\\\\\\dashrightarrow\sf\:\: 1

\therefore\:\underline{\textsf{Hence, correct option is b) \textbf{1}}}.

Answered by Anonymous
12

AnswEr-:

  • \sf{ If\: \dfrac{cos^{4} x}{cos^{2}y} + \dfrac{sin^{4}x }{sin^{2}y}= \:1  , \:then \: \dfrac{cos^{4} y}{cos^{2}x} + \dfrac{sin^{4}y }{sin^{2}x} \: = \:??}\\\\

\mathrm {\bf{\dag{Solution \:of\:Question \:-:}}}\\

  • \underline{\mathrm {\bf{\star{Now\:According \:to\:the\:Question \:-:}}}}\\

  • :\implies {\sf{ \dfrac{cos^{4} x}{cos^{2}y} + \dfrac{sin^{4}x }{sin^{2}y}= \:1}}\\

  • \mathrm {L.C.M\:of\: = \: cos^{2}y \:and\:sin^{2}y \:is \:cos^{2}y sin^{2}y}\\

  • :\implies {\sf{ \dfrac{ cos^{4}x sin^{2}y + sin^{4}x cos^{2}y }{cos^{2}y sin^{2}y } = \:1}}\\

  • \mathrm {By\:Cross\:Multiplication}\\

  • :\implies {\sf{ \dfrac{ cos^{4}x sin^{2}y + sin^{4}x cos^{2}y }{cos^{2}y sin^{2}y } = \:1}}\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + sin^{4}x cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + (sin^{2}x)^{2} cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • \sf{ 1-cos^{2}x =sin^{2}x}

  • :\implies {\sf{  cos^{4}x sin^{2}y + \purple{(sin^{2}x)}^{2} cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + \purple{(1 - cos^{2}x)}^{2} cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • \mathrm {(a-b)^{2} = a^{2} + b^{2} - 2ab }\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + \purple{(1-cos^{2}x)^{2}} cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + \purple{(cos^{4}x+1 - 2cos^{2}x)} cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • :\implies {\sf{  cos^{4}x sin^{2}y + cos^{4}xcos^{2}y + cos^{2} y - 2cos^{2}x cos^{2}y  = \:cos^{2}y sin^{2} }}\\

  • \sf{ cos^{2}x +sin^{2}x=1}

  • :\implies {\sf{  cos^{4}x ( sin^{2}y + cos^{2}y)+ cos^{2}y - cos^{2} y sin^{2}y - 2cos^{2}x cos^{2}y  =0 }}\\

  • :\implies {\sf{  cos^{4}x ( 1 )+ cos^{2}y (1-sin^{2}y)-  2cos^{2}x cos^{2}y  =0 }}\\

  • :\implies {\sf{  cos^{4}x+ cos^{2}y (cos^{2}y)-  2cos^{2}x cos^{2}y  =0 }}\\

  • :\implies {\sf{  cos^{4}x+ cos^{4}y -  2cos^{2}x cos^{2}y  =0 }}\\

  • :\implies {\sf{  (cos^{2}x-cos^{2}y)^{2} =0 }}\\

  • :\implies {\sf{  cos^{2}x-cos^{2}y =0 }}\\

  • :\implies {\sf{  cos^{2}x=cos^{2}y }}\\

  • and , Like :\implies {\sf{  cos^{2}x=cos^{2}y }}\\ this ,

  • :\implies {\sf{  sin^{2}x=sin^{2}y }}\\

_____________________________________________

\implies {\mathrm { \dfrac{cos^{4} y}{cos^{2}x} + \dfrac{sin^{4}y }{sin^{2}x}=??}}\\

  • As , We have finded that ,

  • :\implies {\sf{  cos^{2}x=cos^{2}y }}\\

  • and ,

  • :\implies {\sf{  sin^{2}x=sin^{2}y }}\\

Now , Solve ,

  • \implies {\mathrm { \dfrac{cos^{4} y}{cos^{2}x} + \dfrac{sin^{4}y }{sin^{2}x}}}\\

  • \implies {\mathrm { \dfrac{cos^{4} y}{cos^{2}y} + \dfrac{sin^{4}y }{sin^{2}y}}}\\

  • \implies {\mathrm { \dfrac{(cos^{2} y)^{2}}{cos^{2}y} + \dfrac{(sin^{2}y)^{2} }{sin^{2}y}}}\\

  • \implies {\mathrm { cos^{2}y + sin^{2}y }}\\

  • \implies {\mathrm { 1  }}\\

Hence ,

  • Option B or (1) is Correct.

_______________________________________________

Similar questions