Math, asked by jenny2212, 3 months ago

PLS HELP!!! URGENT. I NEED THE ANSWER AND AM NOT GETTING IT.​

Attachments:

Answers

Answered by sai172982
2

Answer:

here theta is x, i didnt got theta symbol

tan x=√3 . sin x

1/cos x=√3

cos x = 1/√3

cos²x=1/3

cos²x=1-sin²x

so,

1/3=1-sin²x

sin²x=2/3

sin²x-cos²x=(2/3) -(1/3) =1/3

sorry for incovinience

hope u understood

mark me as brainliest

Answered by MagicalBeast
3

Given :

(√3) tan θ = 3 sin θ

To find :

Value of

sin²θ - cos²θ

Identity used :

  • tan x = sin x ÷ cos x
  • sin²x + cos²x = 1

Solution :

(√3) tan θ = 3 sin θ

\sf \implies \:  \sqrt{3}  \:  \times  \dfrac{ \sin( \theta) }{ \cos( \theta) } \:   =  \: 3 \times  \sin( \theta)  \\  \\ \sf \implies \:  \sqrt{3}  \:  \times  \dfrac{ \sin( \theta) }{ 3 \times \sin( \theta)  \: }  \: =  \:  \cos( \theta)  \\  \\  \sf \implies \: \cos( \theta)  \:   = \: \dfrac{ \sqrt{3} }{3}

Squaring both side

 \sf \implies \: \cos^2( \theta)  \:   = \:\bigg( \dfrac{ \sqrt{3} }{3} \bigg)^2 \\  \\ \sf \implies \: \cos^2( \theta)  \:   = \:\dfrac{   {( \sqrt{3}) }^{2} }{3^2} \\  \\ \sf \implies \: \cos^2( \theta)  \:   = \:\dfrac{   3 }{9}

 \sf \implies \: \cos^2( \theta)  \:   = \:\dfrac{  1}{3} \:  \:  \:  \:  \:  \: equation1

_______________________________________________

Now , we know that ,

sin²θ + cos²θ = 1

sin²θ = 1 - cos²θ

On putting value of cos²θ from equation 1 into above equation, we get;

 \sf \implies \: \sin^2( \theta)  \:  =  \: 1 -  \dfrac{1}{3}  \\  \\  \sf \: take \: lcm \\ \sf \implies \: \sin^2( \theta)  \:  =  \: \dfrac{(1 \times 3) - (1  \times 1)}{3}  \\  \\ \sf \implies \: \sin^2( \theta)  \:  =  \: \dfrac{3 - 1}{3}  \\  \\ \sf \implies \: \sin^2( \theta)  \:  =  \: \dfrac{2}{3}

\sf \implies \: \sin^2( \theta)  \:  =  \: \dfrac{2}{3}   \:  \:  \:  \: equation \: 2

_______________________________________________

Now put value of sin²θ & cos²θ in sin²θ - cos²θ .

 \sf \implies \: \sin^2( \theta) \:  -  \:   \cos^2( \theta)  \:   = \:  \: \dfrac{2}{3} \:  -  \: \dfrac{  1}{3}  \\  \\  \sf \implies \: \sin^2( \theta) \:  -  \:   \cos^2( \theta)  \:   = \:  \: \dfrac{2 - 1}{3} \: \\  \\  \sf \implies \: \sin^2( \theta) \:  -  \:   \cos^2( \theta)  \:   = \:  \:  \bold{\dfrac{1}{3}} \:

_______________________________________________

ANSWER : (1/3)

Similar questions