Math, asked by brahmanipalavala, 7 months ago

pls keep answer with solution​

Attachments:

Answers

Answered by pulakmath007
25

\displaystyle\red{\underline{\underline{Solution}}}

Let  \displaystyle \:  \:  \alpha \:  \: and \:  \:  { \alpha}^{2} are the roots of the equation  \displaystyle \:  \:   {x}^{2}  + px + q = 0

Then

 \displaystyle \:  \:  \alpha \:  +    { \alpha}^{2}  =  - p \:   \:  \: \: and \:  \:  \displaystyle \:  \:  \alpha \:   \times   \:  { \alpha}^{2}  = q

Which gives

 \displaystyle \:  \:  \alpha (1 +  { \alpha}) =  - p \:  \:  \:  \: .........(1)

 \displaystyle \:  \:    \:  { \alpha}^{3}  = q \:  \:  \: ..........(2)

Now

Taking Cube in both sides of (1)

 \displaystyle \:  \:  {p}^{3}

 =   - \displaystyle \:  \:    { \alpha}^{3} ({1 \:  \:  +  \:  \:  { \alpha})}^{3}

 =   - \displaystyle \:  \:    { \alpha}^{3}  \{{1 \:  \:  +  \:  \:  { \alpha}}^{3}  + 3 { \alpha} {(1 +  \alpha})\}

 \displaystyle \:  =  - q(1 + q  -  3p) \:  \: by \:  \: (1) \:  \:  \: and \:  \:  \: (2)

 \displaystyle \:  =  - q -  {q}^{2}  + 3pq

So

 \displaystyle \:  {p}^{3}  +  {q}^{2}  =  - q + 3pq

Hence

 \displaystyle \:  {p}^{3}  +  {q}^{2}  =  q( 3p - 1)

Answered by jiya91729
2

Answer:

Let \displaystyle \: \: \alpha \: \: and \: \: { \alpha}^{2}αandα2 are the roots of the equation \displaystyle \: \: {x}^{2} + px + q = 0x2+px+q=0

Then

\displaystyle \: \: \alpha \: + { \alpha}^{2} = - p \: \: \: \: and \: \: \displaystyle \: \: \alpha \: \times \: { \alpha}^{2} = qα+α2=−pandα×α2=q

Which gives

\displaystyle \: \: \alpha (1 + { \alpha}) = - p \: \: \: \: .........(1)α(1+α)=−p.........(1)

\displaystyle \: \: \: { \alpha}^{3} = q \: \: \: ..........(2)α3=q..........(2)

Now

Taking Cube in both sides of (1)

\displaystyle \: \: {p}^{3}p3

= - \displaystyle \: \: { \alpha}^{3} ({1 \: \: + \: \: { \alpha})}^{3}=−α3(1+α)3

= - \displaystyle \: \: { \alpha}^{3} \{{1 \: \: + \: \: { \alpha}}^{3} + 3 { \alpha} {(1 + \alpha})\}=−α3{1+α3+3α(1+α)}

\displaystyle \: = - q(1 + q - 3p) \: \: by \: \: (1) \: \: \: and \: \: \: (2)=−q(1+q−3p)by(1)and(2)

\displaystyle \: = - q - {q}^{2} + 3pq=−q−q2+3pq

So

\displaystyle \: {p}^{3} + {q}^{2} = - q + 3pqp3+q2=−q+3pq

Hence

\displaystyle \: {p}^{3} + {q}^{2} = q( 3p - 1)p3+q2=q(3p−1)

Similar questions