Math, asked by appy2172, 2 months ago

pls prove the below question
tanx-sinx/sin^2x=Tanz/1+cosx

Attachments:

Answers

Answered by senboni123456
5

Step-by-step explanation:

We have,

 \frac{ \tan(x)  -  \sin(x) }{ \sin ^{2} (x) }  \\

 =  \frac{ \frac{ \sin(x) }{ \cos(x) } -  \sin(x) }{ 1 - \cos ^{2} (x) }  \\

 =  \frac{  \sin(x) (\frac{ 1 }{ \cos(x) } -  1)}{ (1 - \cos  (x)) (1 +  \cos(x) )}  \\

 =  \frac{  \sin(x) ( 1 -   \cos(x) )}{  \cos(x) (1 - \cos  (x)) (1 +  \cos(x) )}  \\

 =  \frac{  \sin(x) }{  \cos(x) (1 +  \cos(x) )}  \\

 =  \frac{  \tan(x) }{ 1 +  \cos(x) }  \\

Similar questions