pls send the solution fast pls
Answers
Answer:
Option A
Step-by-step explanation:
Given :-
a+b+c = 0
To find:-
Find the value of [{(a+b)/-c}+{(c+a)/-b}+{(b+c)/-a}]/3 ?
Solution:-
Given that :
a+b+c = 0
=> a+b = - c --------(1)
or
=> b+c = -a ---------(2)
or
=> c+a = -b ----------(3)
Now,
The value of [{(a+b)/-c}+{(c+a)/-b}+{(b+c)/-a}]/3
=> [{-(a+b)/c}+{-(c+a)/b}+{-(b+c)/a}]/3
=> [[{-(a+b)ab}+{-(c+a)ca}+{-(b+c)bc}]/(abc)]/3
=> [{-(a²b+ab²)}+{-(c²a+ca²)}+{-(b²c+bc²)}]/(3abc)
=> [-a²b-ab²-ac²-a²c-b²c-bc²]/(3abc)
=>[(-a²b-a²c)+(-b²a-b²c)+(-c²a-c²b)]/(3abc)
=> [-a²(b+c)-b²(a+c)-c²(a+b)]/(3abc)
From (1) , (2) and (3)
=> [-a²(-a) -b²(-b) -c²(-c)]/(3abc)
=> (a³+b³+c³)/(3abc)
Answer:-
The value of [{(a+b)/-c}+{(c+a)/-b}+{(b+c)/-a}]/3 for the given problem is (a³+b³+c³)/(3abc)
Note :-
We get (a³+b³+c³)/(3abc)
We know that
If a+b+c = 0 then a³+b³+c³ = 3abc
Then above expression becomes
=> 3abc/3abc
=> 1
Used formulae:-
- If a+b+c = 0 then a³+b³+c³ = 3abc