Math, asked by NeeruArora, 1 year ago

pls solve & get 100 pts​

Attachments:

Answers

Answered by deepavaja222
3

If x+y+z = 0 then x³+y³+z³ = 3xyz */

i) [(a²-b²)³+(b²-c²)³+(c²-a²)]/[(a-b)³+(b-c)³+(c-a)³]

= [3(a²-b²)(b²-c²)(c²-a²)]/[3(a-b)(b-c)(c-a)]

=[(a+b)(a-b)(b+c)(b-c)(c+a)(c-a)]/[(a-b)(b-c)(c-a)]

After cancellation, we get

= (a+b)(b+c)(c+a)


NeeruArora: Hi
Answered by Nereida
12

✨HOLA!!!✨

Let us take the numerator first,

a - b + b - c + c - a

 = 0

Now , we know that if a + b + c = 0 , then a cube + b cube + c cube = 3abc .

So, Numerator = 3(a-b)(b-c)(c-a)

Now, let us take the denominator ,

 {a}^{2} -  {b}^{2}  +  {b}^{2}  -  {c}^{2}  +  {c}^{2}  -  {a}^{2}

 = 0

Now,we know that if a + b + c = 0 , then a cube + b cube + c cube = 3abc .

So, numerator becomes =

3( {a}^{2}  -  {b}^{2} )( {b}^{2}  -  {c}^{2} )( {c}^{2}  -  {a}^{2} )

So ,

(3( {a}^{2}  -  {b}^{2} )( {b}^{2}  -  {c}^{2} )( {c}^{2}  -  {a}^{2} )) \div( 3(a - b)(b - c)(c - a)

 = (((a + b)(a - b)) ((a + b)(a - b)) ((a + b)(a - b))) \div ((a  - b)(b - c)(c - a))

 =  (a + b)(b + a)(c + a)

HOPE IT HELPS UHH #CHEERS


Nereida: ❤❤
Similar questions