Math, asked by diwanamrmznu, 1 day ago

pls solve





____full expain ​

Attachments:

Answers

Answered by gugansns9
2

Answer:

f^–1(X)=1/2log↓10(1+x/1–x)

Step-by-step explanation:

=10^2x–1/10^2x+1=y

=10^2x=1+y/1–y by componendo and dividendo

x=1/2log↓10(1+y/1-y)

f^-1(y)=1/2log↓10(1+y/1-y)

f^-1(x)=1/2log↓10(1+x/1-x)

mark me as brainlest

Answered by mathdude500
1

Question :- Find the inverse of the function

\rm \: y = \dfrac{ {10}^{x} - {10}^{ - x} }{{10}^{x} + {10}^{ - x}}  \\  \\

\large\underline{\sf{Solution-}}

Given function is

\rm \: y = \dfrac{ {10}^{x} - {10}^{ - x} }{{10}^{x} + {10}^{ - x}}  \\  \\

can be rewritten as

\rm \: y = \dfrac{ {10}^{x} -\dfrac{1}{{10}^{x}}  }{{10}^{x} + \dfrac{1}{{10}^{x}} }  \\  \\

\rm \: y = \dfrac{\dfrac{{10}^{2x} - 1}{{10}^{x}}  }{\dfrac{{10}^{2x} + 1}{{10}^{x}} }  \\  \\

\rm \: y = \dfrac{{10}^{2x} - 1}{{10}^{2x} + 1}  \\  \\

\rm \: y({10}^{2x} + 1) = {10}^{2x} - 1 \\  \\

\rm \: {10}^{2x}y +y = {10}^{2x} - 1 \\  \\

\rm \: {10}^{2x}y  - {10}^{2x} =  - y - 1 \\  \\

\rm \: {10}^{2x}(y  - 1) =  - (y + 1) \\  \\

\rm \:  - {10}^{2x}(1 - y) =  - (y + 1) \\  \\

\rm \:  {10}^{2x}(1 - y) =  y + 1 \\  \\

\rm \: {10}^{2x} = \dfrac{y + 1}{y - 1}  \\  \\

We know,

 \red{\boxed{ \sf{ \: {a}^{b} = c \: \rm\implies \:b =  log_{a}(c) \: }}} \\  \\

So, using this result, we get

\rm \: 2x =  log_{10}\bigg(\dfrac{y + 1}{1 - y} \bigg)  \\  \\

\bf\implies \: x = \dfrac{1}{2}   log_{10}\bigg(\dfrac{y + 1}{1 - y} \bigg)  \\  \\

OR

\bf\implies \:  {f}^{ - 1}(x)  = \dfrac{1}{2}   log_{10}\bigg(\dfrac{x + 1}{1 - x} \bigg)  \\  \\

Similar questions