Math, asked by aacash2003, 1 year ago

pls solve it fast. it's urgent

Attachments:

Answers

Answered by rakeshmohata
1
Hope u like my process
======================
 =  >  \: ax + by = 1 \\  \\ or.  \: \: ax = 1 - by \\  \\ or. \:  \: x =  \frac{1 - by}{a} ......(1) \\  \\  \\  now..given \:  \:  \:  \\  \\  =  > bx + ay =  \frac{ {(a + b)}^{2} }{ {a}^{2}  +  {b}^{2} }  - 1 \\  \\ or. \:  \: b( \frac{1 - by}{a} ) + ay =  \frac{ {(a + b)}^{2} - ( {a}^{2} +  {b}^{2})   }{ {a}^{2}  +  {b}^{2} }  \\  \\ or . \:  \:  \frac{(b -  {b}^{2}y)  +  {a}^{2} y}{a}  =  \frac{ {a}^{2} +  {b}^{2} + 2ab -  {a}^{2} -  {b}^{2}    }{ {a}^{2} +  {b}^{2}  }  \\  \\ or. \:  \: b +  {a}^{2} y -  {b}^{2} y = \frac{a \times 2ab}{ { a }^{2} +  {b}^{2}  }  \\  \\ or. \:  \: y( {a}^{2}  -  {b}^{2} ) =  \frac{2 {a}^{2}b }{ {a}^{2} +  {b}^{2}  }  - b \\  \\ or. \:  \: y( {a}^{2} -  {b}^{2} )  =  \frac{2 {a}^{2}b -  {a}^{2}b -  {b}^{3}   }{( {a}^{2} +  {b}^{2})  }  \\  \\ or. \:  \: y =  \frac{ {a}^{2}b -  {b}^{3}  }{( {a}^{2} +  {b}^{2} )( {a}^{2}  -  {b}^{2})  }  \\  \\ or. \:  \: y =  \frac{b( {a}^{2} -  {b}^{2} ) }{( {a}^{2} +  {b}^{2} )( {a}^{2}  -  {b}^{2})  }  \\  \\ or. \:  \: y =  \frac{b}{ {a}^{2} +  {b}^{2}  }  \\  \\  \\ putting \:  \: the \: value \:  \: of \:  \: y \:  \: in \: equation \:  \: (1) \\ ............................................................. \\  \\  =  > x =  \frac{1 - b( \frac{b}{ {a}^{2}  +  {b}^{2} } )}{a}  \\  \\ or. \:  \: x =  \frac{( {a}^{2} +  {b}^{2}) -  {b}^{2}   }{a( {a}^{2} +  {b}^{2} ) }  \\  \\ or. \:  \: x =  \frac{ {a}^{2} +  {b}^{2}  -  {b}^{2}  }{a( { {a}^{2}  +  {b}^{2}) }}  =  \frac{ {a}^{2} }{a( {a}^{2} +  {b}^{2}  )}  \\  \\ or. \:  \: x =  \frac{a}{ {a}^{2} +  {b}^{2}  }
Thus the value of x and y are...

 =  >  \: x =  \frac{a}{ {a}^{2} +  {b}^{2}  }  \\  \\  =  >  \: y =  \frac{b}{ {a}^{2}  +  {b}^{2} }
Hope this is ur required answer

Proud to help you
Similar questions
Math, 8 months ago