Math, asked by avinashmurmu99311, 9 months ago

pls solve it fast trignometry​

Attachments:

Answers

Answered by Anonymous
1

Answer:

HEY FRIEND HERE'S YOURS ANSWER.

Step-by-step explanation:

PLEASE MARK ME AS BRAINLIEST

Attachments:
Answered by tahseen619
2

Step-by-step explanation:

{\underline{{\text{To Prove:}}}}

(1 +  \cot A  -  \cosec A)(1  +  \tan  A +  \sec A) = 2

{\underline{{\text{Solution:}}}}

L.H.S

(1 +  \cot A  -  \cosec A)(1  +  \tan  A +  \sec A) \\  \\ (1 +  \frac{ \cos A }{ \sin A}  -  \frac{1}{ \sin A} )(1 +  \frac{ \sin A}{ \cos A } +  \frac{1}{ \cos A} ) \\  \\ ( \frac{ \sin A+  \cos A- 1 }{ \sin A} )( \frac{ \cos A  +  \sin A + 1}{ \cos A} )  \\  \\ ( \frac{ \sin A+  \cos A- 1 }{ \sin} )( \frac{ \sin A+  \cos A +  1 }{ \cos A } ) \\  \\  \frac{( \sin A+  \cos A){}^{2}   -  {(1)}^{2} }{ \sin A .\cos A}  \\  \\  \frac{  { \sin }^{2} A  +  { \cos {}^{2} A } + 2 \sin A.\cos A   - 1}{ \sin A. \cos A}  \\  \\  \frac{1 - 1 + 2 \sin A.\cos A }{  \sin A.\cos A}  \\  \\  \frac{2  \sin A.\cos A }{ \sin A.\cos A}   \\  \\ 2 \\ \\</p><p>\therefore \text{L.H.S = R.H.S [Proved]}

{{\boxed{ \text{\blue{Some important trigonometry Rules}}}}}

 sin \theta.cosec\theta = 1 \\ \\</p><p>\cos\theta.\sec\theta = 1 \\ \\</p><p>\tan\theta.\cot\theta = 1\\ \\</p><p>\sin^2\theta + \cos^2 \theta= 1 \\ \\</p><p>\cosec^2 \theta -\cot^2 \theta = 1 \\ \\</p><p>\sec^2 \theta - \tan^2 \theta = 1

Similar questions