Math, asked by krishnasori22, 1 month ago

pls solve the question in the attatchement

Attachments:

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given that,

\purple{\rm :\longmapsto\:A = \bigg[ \begin{matrix}i& - i \\  - i&i \end{matrix} \bigg]}

and

\purple{\rm :\longmapsto\:B = \bigg[ \begin{matrix}1& - 1 \\  - 1&1 \end{matrix} \bigg]}

Now, Consider

\rm :\longmapsto\: {A}^{2}

\rm \:  =  \: \bigg[ \begin{matrix}i& - i \\  - i&i \end{matrix} \bigg]\bigg[ \begin{matrix}i& - i \\  - i&i \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix} {i}^{2} +  {i}^{2}  & -  {i}^{2} -  {i}^{2}   \\  -  {i}^{2} -  {i}^{2}  & {i}^{2} +  {i}^{2}   \end{matrix} \bigg]

\purple{\rm :\longmapsto\:\boxed{ \tt{ \: As \:  {i}^{2} =  - 1 \: }}}

So, we get

\rm \:  =  \: \bigg[ \begin{matrix} - 2&2 \\  2& - 2 \end{matrix} \bigg]

Now, Consider

\rm :\longmapsto\: {A}^{4}

\rm \:  =  \: \bigg[ \begin{matrix} - 2&2 \\  2& - 2 \end{matrix} \bigg]\bigg[ \begin{matrix} - 2&2 \\  2& - 2 \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix}4 + 4& - 4 - 4 \\  - 4 - 4&4 + 4 \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix}8& - 8 \\  - 8&8 \end{matrix} \bigg]

Consider,

\rm :\longmapsto\: {A}^{8}

\rm \:  =  \: \bigg[ \begin{matrix}8& - 8 \\  - 8&8 \end{matrix} \bigg]\bigg[ \begin{matrix}8& - 8 \\  - 8&8 \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix}64 + 64& - 64 - 64 \\  - 64 - 64&4 + 64 \end{matrix} \bigg]

\rm \:  =  \: \bigg[ \begin{matrix}128& - 128 \\  - 128&128 \end{matrix} \bigg]

\rm \:  =  \: 128\bigg[ \begin{matrix}1& - 1 \\  - 1&1 \end{matrix} \bigg]

\rm \:  =  \: 128B

Hence,

\purple{\rm \implies\:\boxed{ \tt{ \:  {A}^{8}  \: =  \: 128 \: B \: }}}

  • Option 3 is correct

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information

Matrix multiplication is defined when number of columns of pre multiplier is equal to the number of columns of post multiplier otherwise matrix multiplication is not defined.

Matrix multiplication may or may not be Commutative

Matrix multiplication is Associative

Matrix multiplication is Distributive

Similar questions