Math, asked by lovelysingh55, 7 months ago

Pls solve this also (°-°)​

Attachments:

Answers

Answered by ItzArchimedes
9

Solution :-

Here , in the given question substituting , cos2x = cos²x - sin²x

We have ,

cos²x - sin²x = \dfrac{\textbf{\textsf{1-tan$^2$x}}}{\small\textbf{\textsf{1+tan$^2$x}}}

Taking RHS and substituting

tanx = \dfrac{\textbf{\textsf{sinx}}}{\textbf{\textsf{cosx}}}

\displaystyle\sf \longrightarrow \dfrac{1-\frac{sin^2x}{cos^2x}}{1+\frac{sin^2x}{cos^2x}}\\\\\displaystyle\sf\longrightarrow \dfrac{\frac{cos^2x-sin^2x}{\cancel{cos^2x}}}{\frac{cos^2x+sin^2x}{\cancel{cos^2x}}}\\\\\displaystyle\sf\longrightarrow \dfrac{cos^2x-sin^2x}{cos^2x + sin^2x}

Substituting ,

cos²x + sin²x = 1

\sf\longrightarrow \dfrac{cos^2x-sin^2x}{1}

\longrightarrow \textbf{\textsf{cos$^2$x-sin$^2$x}}

Now , comparing with RHS

\longrightarrow cos²x - sin²x = cos²x - sin²x

LHS = RHS

Hence , proved

Answered by Anonymous
114

♣ Qᴜᴇꜱᴛɪᴏɴ :

  • Prove : \sf{cos2x=\:\dfrac{1-tan^2x}{1+tan^2x}}

★═════════════════★

♣ ᴀɴꜱᴡᴇʀ :

\cos \left(2x\right)=\dfrac{1-\tan ^2\left(x\right)}{1+\tan ^2\left(x\right)}

\mathrm{Manipulating\:right\:side}

\dfrac{1-\tan ^2\left(x\right)}{1+\tan ^2\left(x\right)}

\text { Express with } \sin , \text { cos }

=\dfrac{-\left(\dfrac{\sin \left(x\right)}{\cos \left(x\right)}\right)^2+1}{\left(\dfrac{\sin \left(x\right)}{\cos \left(x\right)}\right)^2+1}

\text { Simplify } \dfrac{-\left(\dfrac{\sin (x)}{\cos (x)}\right)^{2}+1}{\left(\dfrac{\sin (x)}{\cos (x)}\right)^{2}+1}: \dfrac{-\sin ^{2}(x)+\cos ^{2}(x)}{\sin ^{2}(x)+\cos ^{2}(x)}

=\dfrac{\cos ^2\left(x\right)-\sin ^2\left(x\right)}{\cos ^2\left(x\right)+\sin ^2\left(x\right)}

\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)+\sin ^2\left(x\right)=1

=\dfrac{\cos ^2\left(x\right)-\sin ^2\left(x\right)}{1}

=\cos ^2\left(x\right)-\sin ^2\left(x\right)

\mathrm{Use\:the\:following\:identity}:\quad \cos ^2\left(x\right)-\sin ^2\left(x\right)=\cos \left(2x\right)

=\cos \left(2x\right)

L.H.S = R.H.S

Hence Proved !!!

Similar questions