Math, asked by ShankerxX, 6 months ago

Pls solve this for me don't spam pls​

Attachments:

Answers

Answered by Anonymous
74

Given that:

⠀⠀

⠀⠀

\bar {X} is the mean of n observations  {x_1} , {x_2} ,....., {x_n}

⠀⠀

⠀⠀

To prove:

⠀⠀

⠀⠀

\displaystyle\sum\limits_{i = 1}^{n} (x_i –\bar {X} ) = 0

⠀⠀

⠀⠀

Solution:

⠀⠀

⠀⠀

Here as per information provided in the question,

⠀⠀

⠀⠀

\bar {X} = 1/n\displaystyle\sum\limits_{i = 1}^{n}(x_i) = n\bar {X} = \displaystyle\sum\limits_{i = 1}^{n} {x_i} ........(i)

⠀⠀

Now,

⠀⠀

\displaystyle\sum\limits_{i = 1}^{n} ({x_i} – \bar {X}) =  ({x_i} –\bar {X} ) +  ({x_2 }– \bar {X} ) + .... +

( {x_n} – \bar {X})

⠀⠀

\implies \displaystyle\sum\limits_{i = 1}^{n} ({x_i} – \bar {X}) =  {x_1} + {x_2} +..... {x_n} – n \bar {X}

⠀⠀

\implies \displaystyle\sum\limits_{i = 1}^{n} ({x_i} – \bar {X}) = \displaystyle\sum\limits_{i = 1}^{n} ({x_i} – n\bar {X})

⠀⠀

Now using equation 1,

⠀⠀

\displaystyle\sum\limits_{i = 1}^{n} ({x_i} –\bar {X}) = n\bar {X} – n\bar {X}

⠀⠀

\implies \displaystyle\sum\limits_{i = 1}^{n} (x_i –\bar {X} ) = 0

⠀⠀

Thus, proved.

Similar questions