Math, asked by aryaan121, 1 year ago


Pls solve this
Not getting this one ​

Attachments:

Answers

Answered by Anonymous
7

Solution :-

\huge  \sf \bigg[ \bigg(2^{ \sqrt{x} + 3 }  \bigg)^{ \frac{1}{2 \sqrt{x} } } \bigg]^{\frac{2}{ \sqrt{x} - 1} } = 2 \\  \\  \\  \huge  \sf  \bigg(2^{ \sqrt{x} + 3 }  \bigg)^{ \frac{1}{2 \sqrt{x}} \times  \frac{2}{ \sqrt{x} - 1 }  } = 2 \\  \\  \\   \bf \because  ({a}^{m} )^n =  {a}^{mn}  \\  \\  \\ \huge  \sf  \bigg(2^{ \sqrt{x} + 3 }  \bigg)^{ \frac{2}{ 2 \sqrt{x } (\sqrt{x} - 1) } } = 2  \\  \\  \\ \huge  \sf  \bigg(2^{ \sqrt{x} + 3 }  \bigg)^{ \frac{2}{ 2x - 2 \sqrt{x}}} = 2   \\  \\  \\ \huge  \sf  2^{ \sqrt{x} + 3 \times   \frac{2}{ 2x - 2 \sqrt{x}}} = 2 \\  \\  \\  \huge  \sf 2^{\frac{2 \sqrt{x} + 6 }{ 2x - 2 \sqrt{x}}} = 2^1 \\

 \sf  \dfrac{2 \sqrt{x} + 6 }{2x - 2 \sqrt{x} } =1 \\  \\  \\  \bf \because  {a}^{m}  =  {a}^{n}  \implies m = n \\  \\  \\  \sf  2 \sqrt{x} + 6 = 2x - 2 \sqrt{x}  \\  \\  \\  \sf 2 \sqrt{x} + 2 \sqrt{x} = 2x - 6 \\  \\  \\ \sf 4 \sqrt{x}  = 2(x - 3) \\  \\  \\  \sf 2 \sqrt{x} = x - 3 \\

Squaring on both sides

⇒ (2√x)² = (x - 3)²

⇒ 4x = x² + 3² - 2(x)(3)

Since (a - b)² = a² + b² - 2ab

⇒ 4x = x² + 9 - 6x

⇒ 0 = x² + 9 - 6x - 4x

⇒ 0 = x² + 9 - 10x

⇒ 0 = x² - 10x + 9

⇒ x² - 10x + 9 = 0

Splitting the middle term

⇒ x² - 9x - x + 9 = 0

⇒ x(x - 9) - 1(x - 9) = 0

⇒ (x - 1)(x - 9) = 0

⇒ x - 1 = 0 or x - 9 = 0

⇒ x = 1 or x = 9

Value of x cannot be 1 because the power of it becomes 1/0 and in which the LHS is not equal to 2.

So value of x is 9.


Anonymous: Great : )
Anonymous: Thanks
mysticd: A small mistake in exponential law , please , edit a^m = aⁿ
Similar questions