Math, asked by bhartithakur09011960, 2 months ago

pls solve this problem​

Attachments:

Answers

Answered by sia1234567
25

\underline{ \underline{ \maltese \:  \bold \red{from \: the \: diagram\: we \: get \: to \: know : }}}

 \underbrace{\blacktriangleright\bold{all \: the \: angles  \: written \: below\: will \: be \: equal \: }}

 \bullet \:  \angle \: 1 =  \angle \: 4 \\ \leadsto  \rm \: reason :  \: alternate \: interior \: angles

 \bullet \:  \angle \: 3=  \angle \: 2\\ \leadsto  \rm \: reason :  \: alternate \: interior \: angles

\bullet \:  \angle \: 1 =  \angle \: 2\\ \leadsto  \rm \: reason :  \:co -  \: interior \: angles

The sum of co - interior angle measures 180°

 \pmb{ \frak{ \: now \: lets \: solve \: it}}

 \Rrightarrow \angle \: 1 + \angle \:  2 = 180 \degree \\   \Rrightarrow \: 3x + 5 + 7x + 5 = 180 \degree \\  \Rrightarrow \: 10x + 10 = 180 \degree

 \Rrightarrow \: 10x = 180 \degree - 10 \\ \Rrightarrow \: 10x = 170 \degree \\ \Rrightarrow \: x =  \frac{170}{10}

 \longmapsto  \overline{\fbox \pink{ \: x = 17}}

 \sf \dagger \: now \: lets \: find \:  \angle \: 1

 \to \angle \: 1 = (3x + 5) \\\to\angle \: 1 = (3 \times 17)+ 5 \\  \to \: \angle \: 1 = 51 + 5  \bold{=  \underline{56}}

 \angle \: 1 =  \angle \: 4 \\  \leadsto \fbox \color{blue}{56\degree}

 \circ \sf \: reason : alternate \: interior \: angles

  \sf \dagger \: now \: lets \: find \:  \angle \: 2

 \to \:  \angle \: 2 = (7x + 5) \\  \to \angle \: 2 = (7 \times 17) + 5 \\  \to \:  \angle \: 2 = 119 + 5 =   \underline\bold{124}

 \angle \: 2 =  \angle \: 3 \\  \leadsto \fbox \color{blue}{124\degree}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answered by MasterDhruva
12

Solution :-

To find the value of x, we use a concept called as "The sum of interior angles on same side of transversal always measures 180° when added together".

Value of x :-

According to the concept,

\sf \leadsto (3x + 5) + (7x + 5) = {180}^{\circ}

\sf \leadsto 3x + 7x + 5 + 5 = {180}^{\circ}

\sf \leadsto 10x + 5 + 5 = {180}^{\circ}

\sf \leadsto 10x + 10 = {180}^{\circ}

\sf \leadsto 10x = 180 - 10

\sf \leadsto 10x = 170

\sf \leadsto x = \dfrac{170}{10}

\sf \leadsto x = 17

Now, let's find each of the angles.

Measurement of first angle :-

\sf \leadsto 3x + 5

\sf \leadsto 3(17) + 5

\sf \leadsto 51 + 5

\sf \leadsto \angle{1} = {56}^{\circ}

Measurement of second angle :-

\sf \leadsto 7x + 5

\sf \leadsto 7(17) + 5

\sf \leadsto 119 + 5

\sf \leadsto \angle{2} = {124}^{\circ}

Measurement of third angle :-

\sf \leadsto Straight \: line \: angle = {180}^{\circ}

\sf \leadsto {56}^{\circ} + \angle{3} = {180}^{\circ}

\sf \leadsto \angle{3} = 180 - 56

\sf \leadsto \angle{3} = {124}^{\circ}

Measurement of fourth angle :-

\sf \leadsto Straight \: line \: angle = {180}^{\circ}

\sf \leadsto {124}^{\circ} + \angle{4} = {180}^{\circ}

\sf \leadsto \angle{4} = 180 - 124

\sf \leadsto \angle{4} = {56}^{\circ}

Therefore, the ∠1, ∠2, ∠3 and ∠4 measures 56°, 124°, 56° and 124° respectively. The value of x is 17.

Similar questions