Math, asked by sivaraj1455, 9 months ago

pls solve this
PT Is prove that
ST is say that​

Attachments:

Answers

Answered by BrainlyPopularman
7

GIVEN :

 \bf \tan(A)  =  \dfrac{1}{ \sqrt{3} }

TO PROVE :

 \bf  \to \: 7\sin^{2} (A)  + 3 \cos ^{2} (A)  = 4

SOLUTION :

• We know that if –

  \:  \:  \: {\huge{.}} \:  \:  \:  \bf \tan(A)  =  \dfrac{a}{b}

• Then –

  \:  \:  \: {\huge{.}} \:  \:  \:  \bf \sin(A)  =  \dfrac{a}{ \sqrt{ {a}^{2}  +  {b}^{2} } }

  \:  \:  \: {\huge{.}} \:  \:  \:  \bf \cos(A)  =  \dfrac{b}{ \sqrt{ {a}^{2}  +  {b}^{2} } }

• Let's find sin(A) –

 \bf \implies  \sin(A)  =  \dfrac{1}{ \sqrt{ {(1)}^{2}  +  {( \sqrt{3})}^{2} } }

 \bf \implies  \sin(A)  =  \dfrac{1}{ \sqrt{1 + 3} }

 \bf \implies  \sin(A)  =  \dfrac{1}{ \sqrt{4} }

 \bf \implies  \large{ \boxed{ \bf  \sin(A)  =  \dfrac{1}{2}}}

• Now cos(A) –

 \bf \implies  \sin(A)  =  \dfrac{ \sqrt{3} }{ \sqrt{ {(1)}^{2}  +  {( \sqrt{3})}^{2} } }

 \bf \implies  \sin(A)  =  \dfrac{ \sqrt{3} }{ \sqrt{1 + 3} }

 \bf \implies  \sin(A)  =  \dfrac{ \sqrt{3} }{ \sqrt{4} }

 \bf \implies  \large{ \boxed{ \bf  \sin(A)  =  \dfrac{ \sqrt{3}} {2}}}

• Take L.H.S. –

 \bf \:  \:  =  \:  \: 7\sin^{2} (A)  + 3 \cos ^{2} (A)

• Put the values –

 \bf \:  \:  =  \:  \: 7 \left( \dfrac{1}{2} \right)^{2}  + 3 \left( \dfrac{ \sqrt{3} }{2}  \right)^{2}

 \bf \:  \:  =  \:  \: 7 \left( \dfrac{1}{4} \right) + 3 \left( \dfrac{3}{4}  \right)

 \bf \:  \:  =  \:  \:  \dfrac{7}{4}  +  \dfrac{9}{4}

 \bf \:  \:  =  \:  \:  \dfrac{7 + 9}{4}

 \bf \:  \:  =  \:  \: \cancel  \dfrac{16}{4}

 \bf \:  \:  =  \:  \: 4

 \bf \:  \:  =  \:  \: R.H.S.

 \bf \:  \:  \:  \: { \underbrace{ \bf Hence \:  \: proved}}

Similar questions