Math, asked by rishabh220804, 11 months ago

pls solve this question ​

Attachments:

Answers

Answered by Rohit18Bhadauria
4

Given:

↬ Incomplete Distribution Table

\begin{tabular}{c |  l}Variable & Frequencies &  \\\cline{1-2}0-10 & 10 \\10-20 & 20 \\20-30 & ? \\30-40 & 40 \\40-50 & ? \\50-60 & 25  \\60-70 & 15 \\ \end{tabular}

↬ Median= 35

↬ Sum of all frequencies= 170

To Find:

✏ Value of missing frequencies

Solution:

We know that,

➺ Class or interval which contains the median is called Median Class

➺ Median of grouped frequency distribution

\bf{Median=l+\Bigg(\dfrac{\frac{N}{2}-C}{f}\Bigg)\times h}

where,

l is Lower limit of median class

N is Total frequency

C is Cumulative frequency of the class preceding the median class

f is Frequency of the median class

h is Width(size) of median class

Let the first and second missing values be x and y respectively

\begin{tabular}{c | c l c l}Variable & Frequencies & Cumulative Frequencies \\\cline{1-3}0-10 & 10 & 10 \\10-20 & 20 &  30\\20-30 & x & 30+x \\30-40 & 40 & 70+x \\40-50 & y & 70+x+y \\50-60 & 25 & 95+x+y \\60-70 & 15 & 110+x+y\\Total & N=110+x+y \end{tabular}

Now,

Class 30-40 is the median class because it contains the Median value.

So here,

  • l= 30
  • N= 170
  • C is 30+x
  • f is 40
  • h is 10

Now,

\longrightarrow\sf{Median=l+\Bigg(\dfrac{\frac{N}{2}-C}{f}\Bigg)\times h}

\longrightarrow\sf{35=30+\Bigg(\dfrac{\frac{170}{2}-(30+x)}{40}\Bigg)\times 10}

\longrightarrow\sf{35-30=\Bigg(\dfrac{85-30-x}{40}\Bigg)\times 10}

\longrightarrow\sf{35-30=\Bigg(\dfrac{55-x}{40}\Bigg)\times 10}

\longrightarrow\sf{5=\Bigg(\dfrac{55-x}{\cancel{40}}\Bigg)\times \cancel{10}}

\longrightarrow\sf{5=\Bigg(\dfrac{55-x}{4}\Bigg)}

\longrightarrow\sf{55-x=5\times4}

\longrightarrow\sf{55-x=20}

\longrightarrow\sf{55-20=x}

\longrightarrow\sf{x=55-20}

\longrightarrow\sf{x=35}--------(1)

Also, it is given that

Sum of all frequencies= 170

110+x+y= 170

x+y= 170-110

x+y= 60

From (1)

35+y= 60

y= 60-35

y= 25

Hence, the values of missing frequencies are 35 and 25.

Similar questions