Math, asked by sy7739409, 9 months ago

Pls solve this question​

Attachments:

Answers

Answered by BrainlyIAS
7

Answer

LHS = RHS

Given

\bullet \rm \;\; \dfrac{(x^{-1}+\gamma^{-1})}{x^{-1}}+\dfrac{(x^{-1}+\gamma^{-1})}{\gamma^{-1}}

To prove

\bullet \;\; \rm \dfrac{(x+\gamma)^2}{x\gamma}

Proof

\rm LHS\\\\\rm \implies \dfrac{(x^{-1}+\gamma^{-1})}{x^{-1}}+\dfrac{(x^{-1}+\gamma^{-1})}{\gamma^{-1}}\\\\\implies \rm \dfrac{(\frac{1}{x}+\frac{1}{\gamma})}{\frac{1}{x}}+\dfrac{(\frac{1}{x}+\frac{1}{\gamma})}{\frac{1}{\gamma}}\\\\\implies \rm \dfrac{\frac{(\gamma +x)}{x \gamma}}{\frac{1}{x}}+ \dfrac{\frac{(\gamma +x)}{x \gamma}}{\frac{1}{\gamma}}\\\\\implies \rm \dfrac{x(\gamma +x)}{x\gamma}+\dfrac{\gamma(\gamma + x)}{x\gamma}\\\\\implies \rm \dfrac{x(\gamma +x)+\gamma (\gamma +x)}{x\gamma}\\\\

\implies \rm \dfrac{x\gamma +x^2+\gamma^2+\gamma x}{x\gamma}\\\\\implies \rm \dfrac{x^2+2x\gamma +\gamma^2}{x\gamma}\\\\\implies \rm \dfrac{(x+\gamma)^2}{x\gamma}\ \; [\; Since,(a+b)^2=a^2+2ab+b^2 \;]\\\\\implies \rm RHS\\\\\rm Hence\ proved

Answered by Bᴇʏᴏɴᴅᴇʀ
24

QUESTION:-

➣ Prove:-

ANSWER:-

Given:-

\dfrac{(x^{-1}+y^{-1})}{x^{-1}}+\dfrac{(x^{-1}+y^{-1})}{y^{-1}}

To Prove:-

\dfrac{(x+y)^2}{xy}

Proof:-

• LHS :-

\dfrac{(x^{-1}+y^{-1})}{x^{-1}}+\dfrac{(x^{-1}+y^{-1})}{y^{-1}}

\dfrac{(\frac{1}{x}+\frac{1}{y})}{\frac{1}{x}}+\dfrac{(\frac{1}{x}+\frac{1}{y})}{\frac{1}{y}}

\dfrac{\frac{(y+x)}{x y}}{\frac{1}{x}}+ \dfrac{\frac{(y +x)}{x y}}{\frac{1}{y}}

\dfrac{x(y +x)}{xy}+\dfrac{y(y + x)}{xy}

\dfrac{x(y +x)+y(y +x)}{xy}

\dfrac{xy +x^2+y^2+y x}{xy}

\dfrac{x^2+2xy +y^2}{xy}

\boxed{\bold{As \ we \ know \ the \ identity:-}} \\ </p><p></p><p>{\boxed{\bold(a+b)^2=a^2+2ab+b^2}}

\dfrac{(x+y)^2}{xy}

• RHS:-

\dfrac{(x+y)^2}{xy}

• Therefore,

\purple{LHS = RHS }

Hence Proved....!

Similar questions