pls solve this question fast
Attachments:
Answers
Answered by
6
Answer:
Step-by-step explanation:
Attachments:
Answered by
0
OK ITS DONE LETS SEE
SINX(1+TANX)+COSX(1+COTX)
=SECX+COSECX
L.H.S
SINX(1+SINX/COSX)+COS(1+COSX/SINX)
=SINX + (SIN^2X/COSX)+ COSX +( COS^2X+SINX)
=(SINX+COSX)+{(SIN^2X/COSX)+(COS^2X/SINX)}
=SIN X +COSX +(SIN^3X+COS^3X/COSXSINX)
AS WE KNOW
A^3+B^3=(A+B)(A^2+B^2-AB)
SO
(SINX+COSX)+
{(SINX +COSX)(SIN^2X+COS^2X-SINXCOSX)}
TAKING (SINX + COSX ) COMMON AND PUTTING
SIN^2X+COS^2X=1
WE GET
(SINX+COSX){1+
(1-SINXCOSX/SINXCOSX)
=(SINX+COSX)(SINXCOSX+1-SINXCOSX)
=(SINX+COSX)(1/SINXCOSX)
=(SINX+COSX/SINXCOSX)
NOW SOLVING R.H.S
=SECX+COSECX
=1/COSX+1/SINX
=SINX+COSX/SINXCOSX
SO HERE L.H.S=R.H.S
HENCE PROVED
THANKS FOR ASKING
MARK BRAINLIEST IF YOUR DOUBTS ARE CLEAR.
YOU CAN FOLLOW ME ALSOOOOOOOOOO.IF YOU WANT TO.
#lordcarbin
#apnatimeayega
#devilwillrise
"Rakh kadam to far de cher de lakin Zinda gar de"
SINX(1+TANX)+COSX(1+COTX)
=SECX+COSECX
L.H.S
SINX(1+SINX/COSX)+COS(1+COSX/SINX)
=SINX + (SIN^2X/COSX)+ COSX +( COS^2X+SINX)
=(SINX+COSX)+{(SIN^2X/COSX)+(COS^2X/SINX)}
=SIN X +COSX +(SIN^3X+COS^3X/COSXSINX)
AS WE KNOW
A^3+B^3=(A+B)(A^2+B^2-AB)
SO
(SINX+COSX)+
{(SINX +COSX)(SIN^2X+COS^2X-SINXCOSX)}
TAKING (SINX + COSX ) COMMON AND PUTTING
SIN^2X+COS^2X=1
WE GET
(SINX+COSX){1+
(1-SINXCOSX/SINXCOSX)
=(SINX+COSX)(SINXCOSX+1-SINXCOSX)
=(SINX+COSX)(1/SINXCOSX)
=(SINX+COSX/SINXCOSX)
NOW SOLVING R.H.S
=SECX+COSECX
=1/COSX+1/SINX
=SINX+COSX/SINXCOSX
SO HERE L.H.S=R.H.S
HENCE PROVED
THANKS FOR ASKING
MARK BRAINLIEST IF YOUR DOUBTS ARE CLEAR.
YOU CAN FOLLOW ME ALSOOOOOOOOOO.IF YOU WANT TO.
#lordcarbin
#apnatimeayega
#devilwillrise
"Rakh kadam to far de cher de lakin Zinda gar de"
Similar questions