Physics, asked by barbiegoldjjms, 11 months ago

Pls solve this question
The correct answer-
T1=100/(root 3), T2=200/(root 3), T3=200/(root 3), T4=200

Attachments:

Answers

Answered by rhythm06
1

Answer:

here, T2 cos30° = mg

therefore, T2 is 200/ ( root3)

also T1= T2 sin30° so,

T1 is 100/( root3)

also, T4cos60° = T2cos30°

so, T4 is 200

also, T2cos60° = T3

therefore T3 is 100/ ( root 3)

Answered by BrainlyConqueror0901
8

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{T_{1}=\frac{100}{\sqrt{3}}\:N}}}\\

\green{\tt{\therefore{T_{2}=\frac{200}{\sqrt{3}}\:N}}}\\

\green{\tt{\therefore{T_{3}=\frac{200}{\sqrt{3}}\:N}}}\\

\green{\tt{\therefore{T_{4}=200\:N}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:   \implies Mass \: of \: block = 10 \: kg \\  \\  \red{\underline \bold{To \: Find :}} \\  \tt:  \implies  Tension( T_{1}) = ?\\  \\  \tt:  \implies  Tension( T_{2}) = ?\\  \\  \tt:  \implies  Tension( T_{3}) = ?\\  \\  \tt:  \implies  Tension( T_{4}) = ?

• According to given question :

 \bold{For \:component  \: of\: tension( T_{4})  \: at \: point \:  B}\\ \tt:  \implies  Horizontal \: component =  T_{4} \: sin \: \theta \\  \\ \tt:  \implies  Horizontal \: component = T_{4}  \:sin \: 60 \degree \\  \\ \tt:  \implies  Horizontal \: component = \frac{ T_{4}  \sqrt{3} }{2}  \\  \\ \tt:  \implies  Vertical\: component = T_{4} \: cos \:  \theta \\  \\ \tt:  \implies  Vertical\: component = T_{4} \:cos \: 60 \degree \\  \\ \tt:  \implies  Vertical\: component =  \frac{ T_{4}}{2}  \\  \\  \bold{For \: Component  \: of\: tension( T_{2} ) \: at \: point \: B}\\ \tt:  \implies  Horizontal \: component =  T_{2} \: cos \: \theta \\  \\ \tt:  \implies  Horizontal \: component = T_{2}  \:cos \: 60 \degree \\  \\ \tt:  \implies  Horizontal \: component = \frac{ T_{2}  }{2}  \\  \\ \tt:  \implies  Vertical\: component = T_{2} \: sin \:  \theta

\tt:  \implies  Vertical\: component = T_{2} \:sin \: 60 \degree \\  \\ \tt:  \implies  Vertical\: component =  \frac{ T_{2} \sqrt{3} }{2}  \\  \\  \bold{For \:component  \: of\: tension( T_{2}) \:at \: point \: A } \\ \tt:  \implies  Horizontal \: component =  T_{2} \: sin \: \theta \\  \\ \tt:  \implies  Horizontal \: component = T_{2}  \:sin \: 30 \degree \\  \\ \tt:  \implies  Horizontal \: component = \frac{ T_{2}  }{2}  \\  \\ \tt:  \implies  Vertical\: component = T_{2} \: cos \:  \theta \\  \\ \tt:  \implies  Vertical\: component = T_{2} \:cos \: 30 \degree \\  \\ \tt:  \implies  Vertical\: component =  \frac{ T_{4} \sqrt{3} }{2}

 \bold{At \: point \: A\: in \: horizontal : } \\  \tt:  \implies   T_{1} =   \frac{ T_{2} }{2}  \\  \\  \tt:  \implies 2T_{1}  = T_{2}  -  -  -  -  - (1) \\  \\  \bold{At \: point \: A \: in \: Vertical : } \\  \tt:  \implies  \frac{ T_{2} \sqrt{3}  }{2}  = mg \\  \\ \tt:  \implies  \frac{ T_{2} \sqrt{3}  }{2} = 100 \\  \\   \green{\tt: \implies T_{2} =  \frac{200}{ \sqrt{3} } \: N } \ \\  \\  \bold{At \: point \: B \: in \: vertical : }  \\  \tt:  \implies  \frac{ T_{4} }{2}  =  \frac{ T_{2} \sqrt{3} }{2}  \\  \\ \tt:  \implies  T_{2} =  \frac{T_{4} }{ \sqrt{3} }  \\  \\ \tt:  \implies  \frac{200}{ \sqrt{3} }  =  \frac{ T_{4}}{ \sqrt{3}}

\green{\tt:  \implies  T_{4} = 200 \: N} \\  \\  \bold{At \: point \: B \: in\: horizontal : } \\  \tt:  \implies  \frac{ T_{4} \sqrt{3}  }{2}  =  T_{3} +  \frac{ T_{2} }{2}  \\  \\ \tt:  \implies  T_{4} \sqrt{3}  -  T_{2} = 2  T_{3} \\  \\ \tt:  \implies 200 \sqrt{3}  -  \frac{200}{ \sqrt{3} }  = 2 T_{3} \\  \\ \tt:  \implies  \frac{600 - 200}{ 2\sqrt{3} }  =  T_{3} \\  \\  \green{\tt:  \implies T_{3}  =  \frac{200}{ \sqrt{3} }  \: N} \\  \\  \text{Putting \: value \: of \:  }T_{2} \:  \text{in \: (1)} \\  \tt:  \implies 2 T_{1} =  \frac{200}{ \sqrt{3} }  \\  \\ \tt:  \implies T_{1} =  \frac{200}{ 2\sqrt{3} }  \\  \\  \green{\tt:  \implies T_{1} = \frac{100}{ \sqrt{3} } \: N }


Rythm14: Awesome! o.O
BrainlyConqueror0901: thnx :D
Similar questions