Math, asked by srushtimulge30, 10 months ago

pls solve this solution in attachment

pls...​

Attachments:

Answers

Answered by Anonymous
2

Trigonometric Identity:

\sf{LHS=\frac{sin \theta - cos \theta + 1}{sin \theta  +  cos \theta  -  1}}

\sf{Divide\:numerator\:and\:denominator\:by\:cos\theta}

\implies\Large\sf{\frac{ \frac{sin \theta}{cos \theta} -  \frac{cos \theta}{cos \theta}  +  \frac{1}{cos \theta}  }{\frac{sin \theta}{cos \theta}  +    \frac{cos \theta}{cos \theta}   -  \frac{1}{cos \theta}}}

\sf{\implies \frac{tan \theta  - 1 + sec \theta}{tan \theta   + 1  - sec \theta}}

\sf{Rationalize \:the \:denominator}

\sf{\implies \frac{(tan \theta - 1) + (sec \theta)}{(tan \theta  +  1)  -  (sec \theta)}  \times \frac{(tan \theta  + 1) + (sec \theta)}{(tan \theta  +  1)   + (sec \theta)}}

\Large\sf{\implies \frac{ \binom{  {tan}^{2}  \theta +  \cancel{tan \theta} + tan \theta sec \theta \cancel{ - tan \theta} - 1  }{ \cancel{-  sec \theta} + tan \theta sec \theta +\cancel{sec \theta} +  {sec}^{2}  \theta} }{ {tan}^{2} \theta + 1 + 2tan \theta  -  {sec}^{2}  \theta}}

\sf{\implies \frac{{tan}^{2}  \theta + 2 tan\theta sec \theta - 1 +  {sec}^{2} }{ \cancel{{sec }^{2} } \theta + 2tan \theta   \cancel{ -  {sec}^{2}  \theta}} }

\sf{\implies \frac{2  {tan}^{2} \theta + 2tan \theta sec \theta}{2tan \theta}}

\sf{\implies \frac{ \cancel{2tan \theta}(tan \theta + sec \theta)}{ \cancel{2tan \theta}} }

\sf{\implies tan\theta+sec\theta}

\sf{Multiply \:numerator \:and\:denominator \:by}

\sf{ tan\theta-sec\theta}

\sf{\implies \frac{tan \theta + sec \theta(tan \theta - sec \theta)}{(tan \theta - sec \theta)}}

\sf{\implies \frac{{tan}^{2}  \theta -   {sec }^{2}  \theta}{tan \theta - sec \theta} }

\sf{\implies \frac{ - 1}{tan \theta - sec \theta} }

\sf{\implies\frac{1}{sec \theta - tan \theta} =RHS}

________________

@zaqwertyuioplm

Answered by pankajroy2
4

here is your ans== see in attachment. ..

...........however. ....... math ka exam end ho gya ..he.......................

Attachments:
Similar questions