Math, asked by kishorekumar89, 7 months ago

pls someone give the right answer​

Attachments:

Answers

Answered by manissaha129
2

Answer:

hope this will help you

b) is your answer....

Please mark me as brainliest ♥️♥️♥️

because this answer deserves it....

may god bless you.....

Attachments:
Answered by Arceus02
7

As \alpha and \beta are the roots of \sf 3x^2 + 5x-7=0, so,

 \sf \alpha  +  \beta  =  \frac{ - b}{a}  =  \frac{ - 5}{3} \quad\quad\dots(1) \\ \\ \longrightarrow \sf 3(\alpha  +  \beta ) =  - 5 \\ \\ \longrightarrow \sf 3 \alpha  + 3 \beta  =  - 5  \\ \\ \longrightarrow \sf 3 \alpha  + 5 =  - 3 \beta \quad\quad\dots(2)  \\ \\ \longrightarrow \sf 3 \beta  + 5 =  - 3 \alpha\quad\quad\dots(3)

\\ \\ \\

And,

 \sf \alpha  \beta  =  \dfrac{c}{a}  =  \dfrac{ - 7}{3}\quad\quad\dots(4)

\\ \\ \\

And,

 \sf {( \alpha  +  \beta )}^{2}  =   { \alpha }^{2}  +  { \beta }^{2}  + (2 \alpha  \beta) \\ \\

From (1) and (4),

\\ \longrightarrow \sf {  \alpha  }^{2}  +  { \beta }^{2} =   {\bigg( \dfrac{ - 5}{3}\bigg) }^{2}  - \bigg(2 \times  \dfrac{ - 7}{3} \bigg) \\ \\ \longrightarrow \sf { \alpha }^{2}  +  { \beta }^{2}  =  \dfrac{25}{9}  +  \dfrac{14}{3}  \\ \\ \longrightarrow \sf { \alpha }^{2}  +  { \beta }^{2}  =  \dfrac{67}{9} \quad\quad\dots(5)

\\ \\ \\

To find:

 \sf {\bigg( \dfrac{1}{3 \alpha  + 5}\bigg) }^{2}  +{\bigg( \frac{1}{3  \beta   + 5}\bigg) }^{2}  \\ \\

From (2) and (3),

\\ \\ \longrightarrow \sf {\bigg( \frac{1}{ - 3  \beta  }\bigg)}^{2} +  {\bigg( \frac{1}{ - 3  \alpha }\bigg) }^{2}  \\ \\ \longrightarrow \sf \frac{1}{9 { \beta }^{2} }  +  \frac{1}{9 { \alpha }^{2} }  \\ \\ \longrightarrow \sf  \frac{1}{9} \bigg( \frac{1}{ { \beta }^{2} }  +  \frac{1}{ { \alpha }^{2} } \bigg) \\ \\ \longrightarrow \sf  \frac{1}{9} \bigg( \frac{   { \alpha }^{2} +  { \beta }^{2}  }{ {( \alpha  \beta )}^{2} } \bigg) \\ \\

From (5) and (4),

\\ \\ \longrightarrow \sf \frac{1}{9} \Bigg[ \frac{ \big(\frac{67}{9}\big) }{ \big({ \frac{ - 7}{3} }^{2} \big)} \Bigg] \\ \\ \longrightarrow \sf \frac{1}{9} \Bigg[ \frac{\:\: \big(\frac{67}{9}\big)\:\:}{ \:\:\big(\frac{49}{9}\big) \:\:} \Bigg]  \\ \\ \longrightarrow \sf \frac{1}{9} \bigg( \frac{67}{49} \bigg) \\ \\ \longrightarrow \sf   \dfrac{67}{441   \: }

\\

Hence the answer is,

\longrightarrow \underline{\underline{\sf{\green{ \:\:\dfrac{67}{441}\:\:}}}}

Similar questions