Math, asked by aditya1122ytpro, 3 months ago

pls tell answer fast plsplspls

Attachments:

Answers

Answered by rkcomp31
1

Answer:

Ans: 30

Step-by-step explanation:

(2^{-1}-3^{-1})^{-1} +(6^{-1}-8^{-1})^{-1}\\\\=(\frac12 -\frac13)^{-1} + (\frac16 -\frac18)^{-1} \\\\=(\frac{3-2}{3\times 2})^{-1} + (\frac{8-6}{8\times 6})^{-1} \\\\=( \frac16)^{-1}+( \frac{1}{24})^{-1}\\\\=6+24\\\\\bf =30

Answered by BrainlyRish
4

Given : \sf{Expression = \bigg( (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}\bigg)}\\

To Simplify : \sf{\bigg( (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}\bigg)}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

⠀⠀⠀⠀⠀ \bf{\star \:Expression = \bigg( (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}\bigg)}\\

⠀⠀⠀⠀⠀⠀\underline {\frak{\star\:Now \: By \: Solving \: the \: Given \: Expression \::}}\\

\sf{Expression = \bigg( (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}\bigg)}\\

:\implies \sf{ \bigg( (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}\bigg)}\\

As, We know that ,

  • a^{-1}= \dfrac{1}{a}

:\implies \sf{ (2^{-1} -3^{-1})^{-1} + ( 6^{-1} - 8^{-1} )^{-1}}\\

:\implies \sf{ \bigg(\dfrac{1}{2} -\dfrac{1}{3}\bigg)^{-1} + \bigg( \dfrac{1}{6} - \dfrac{1}{8}  \bigg)^{-1}}\\

:\implies \sf{ \bigg(\dfrac{3 - 2}{6} \bigg)^{-1} + \bigg( \dfrac{4 - 3}{24}   \bigg)^{-1}}\\

:\implies \sf{ \bigg(\dfrac{1}{6} \bigg)^{-1} + \bigg( \dfrac{1}{24}   \bigg)^{-1}}\\

As, We know that ,

  • \bigg(\dfrac{1}{a}\bigg)^{-1}= a

:\implies \sf{ \bigg(\dfrac{1}{6} \bigg)^{-1} + \bigg( \dfrac{1}{24}   \bigg)^{-1}}\\

:\implies \sf{ 6 + 24 }\\

:\implies \bf{\underline {Answer\:= 30} }\bigstar \\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Similar questions