Math, asked by keshavgoel2019, 2 months ago

pls tell step by step solution , will follow and rate 5 star to right ans​

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 z_{1} =  r_{1}( \cos \theta_{1} + i \sin \theta_{1}) \\ z_{2} =  r_{2}( \cos \theta_{2} + i \sin \theta_{2})

Now,

  \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} } \bigg( \frac{ \cos \theta_{1} + i \sin \theta_{1}}{ \cos \theta_{2} + i \sin \theta_{2} } \bigg) \\

  \implies \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} } \bigg \{ \frac{ (\cos \theta_{1} + i \sin \theta_{1})( \cos \theta_{2}  - i \sin \theta_{2} )}{( \cos \theta_{2} + i \sin \theta_{2} )( \cos \theta_{2}  - i \sin \theta_{2} )} \bigg \} \\

  \implies \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} } \bigg \{ \frac{ (\cos \theta_{1}\cos \theta_{2} + i \sin \theta_{1}\cos \theta_{2}  - i  \cos \theta_{1} \sin \theta_{2}  +  \sin \theta_{1}\sin \theta_{2})}{ \cos^{2} \theta_{2} + \sin ^{2} \theta_{2} } \bigg \} \\

  \implies \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} }  (\cos \theta_{1}\cos \theta_{2} +\sin \theta_{1}\sin \theta_{2} + i \sin \theta_{1}\cos \theta_{2}  - i  \cos \theta_{1} \sin \theta_{2}   ) \\

  \implies \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} }  (\cos \theta_{1}\cos \theta_{2} +\sin \theta_{1}\sin \theta_{2} + i \sin \theta_{1}\cos \theta_{2}  - i  \cos \theta_{1} \sin \theta_{2}  ) \\

  \implies \frac{z_{1}}{ z_{2} } =   \frac{r_{1}}{ r_{2} }   \{\cos (\theta_{1} -  \theta_{2}) + i \sin (\theta_{1} -  \theta_{2} )   \}\\

So,

  \arg \bigg(\frac{z_{1}}{ z_{2} }  \bigg)=   (\theta_{1} -  \theta_{2}) \\

Now,

  \bigg| \frac{z_{1}}{ z_{2} }  \bigg| =   \frac{r_{1}}{ r_{2} }  \sqrt{\cos ^{2}  (\theta_{1} -  \theta_{2}) + \sin  ^{2} (\theta_{1} -  \theta_{2} ) }  \\

   \implies\bigg| \frac{z_{1}}{ z_{2} }  \bigg| =   \frac{r_{1}}{ r_{2} }    \\

Answered by llCrownPrincell
1

Step-by-step explanation:

Correct option is

C

r=1,θ=tan

−1

(

4

3

)

2+i

1+2i

=r(cosθ+isinθ)

(2+i)(2−i)

(1+2i)(2−i)

=r(cosθ+isinθ)

5

4+3i

=r(cosθ+isinθ) ...(1)

5

4+3i

=r

∴r=1

From eq. (1)

r(cosθ+isinθ)=

5

4+3i

Similar questions