Math, asked by nagaswarupa1985, 1 month ago

Pls tell the answer fastt

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\: log_{2}(x) = a

and

\rm :\longmapsto\: log_{5}(y) = a

We know that,

\red{\boxed{ \rm{ log_{x}(y) = z \:  \implies \: y =  {x}^{z}}}}

So, using this identity,

\rm :\longmapsto\:x =  {2}^{a}

and

\rm :\longmapsto\:y =  {5}^{a}

Also, given that

\rm :\longmapsto\: {100}^{2a - 1} = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

We know that,

\red{\boxed{ \rm{ {a}^{x - y} =  \frac{ {a}^{x} }{ {a}^{y} }}}}

So, using this identity, we get

\rm :\longmapsto\: \dfrac{ {100}^{2a} }{100}  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

We know,

\red{\boxed{ \rm{ {( {a}^{x} )}^{y} =  {a}^{xy}}}}

\rm :\longmapsto\: \dfrac{ {10}^{4a} }{ {10}^{2} }  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

\rm :\longmapsto\: \dfrac{ {(2 \times 5)}^{4a} }{ {10}^{2} }  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

We know that,

\red{\boxed{ \rm{ {(xy)}^{a} =  {x}^{a} \times  {y}^{a}}}}

So, using this, we get

\rm :\longmapsto\: \dfrac{ {( {2}^{a}  \times  {5}^{a} )}^{4} }{ {10}^{2} }  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

\rm :\longmapsto\: \dfrac{ {(xy)}^{4} }{ {10}^{2} }  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

We know,

\red{\boxed{ \rm{ {(xy)}^{a} =  {x}^{a} \times  {y}^{a}}}}

So, using this

\rm :\longmapsto\: \dfrac{ {(x)}^{4} {(y)}^{4}  }{ {10}^{2} }  = \dfrac{ {x}^{ \alpha }  {y}^{ \beta } }{ {10}^{ \gamma } }

On comparing both sides, we get

\rm :\longmapsto\: \alpha  = 4

\rm :\longmapsto\: \beta  = 4

\rm :\longmapsto\: \gamma  = 2

Now, Consider,

\rm :\longmapsto\:\dfrac{ \alpha  +  \beta }{ \gamma }

\rm \:  =  \: \dfrac{4 + 4}{2}

\rm \:  =  \: \dfrac{8}{2}

\rm \:  =  \: 4

Hence,

\bf:\longmapsto\:\dfrac{ \alpha  +  \beta }{ \gamma }  = 4

Additional Information :-

\red{\boxed{ \rm{ log(xy) = logx + logy}}}

\red{\boxed{ \rm{ log( \frac{x}{y} ) = logx  -  logy}}}

\red{\boxed{ \rm{ log( {x}^{y} ) = y \: logx}}}

\red{\boxed{ \rm{ log_{x}(x) = 1}}}

\red{\boxed{ \rm{ log_{ {x}^{y} }( {x}^{z} )  =  \frac{z}{y}}}}

\red{\boxed{ \rm{ {e}^{logx} = x}}}

\red{\boxed{ \rm{ {e}^{ylogx} =  {x}^{y} }}}

Similar questions