Math, asked by deepkaur1210, 10 months ago

plss ans. these questions ​

Attachments:

Answers

Answered by Cosmique
49

\rule{205}3

Question

Prove that :

tan θ + tan(90 - θ) = sec θ sec(90 - θ)

Solution

Taking LHS

⇨ LHS = tan θ + tan (90 - θ)

Using trigonometric ratio

cot A = tan (90 - A)

⇨ LHS = tan θ + cot θ

⇨ LHS = \sf{\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}}

Taking LCM

⇨ LHS = \sf{\frac{sin^2\theta+cos^2\theta}{sin\theta\:cos\theta}}

Using trigonometric identity

sin²A + cos²A = 1

⇨ LHS = \sf{\frac{1}{sin\theta\;cos\theta}}

⇨ LHS =  cosecθ secθ

Using trigonometric ratio

cosec A = sec ( 90 - A )

⇨ LHS = sec ( 90 - θ ) sec θ = RHS

Proved .

\rule{205}3

Question

Find the angle of elevation of the sun when shadow of a pole h metres high is √3 h metres long.

Solution

\setlength{\unitlength}{1.5cm}\begin{picture}(6,8)\linethickness{0.5mm}\qbezier(1,1)(3,1)(4,1)\qbezier(4,1)(4,2)(4,3)\qbezier(1,1)(3,2.3)(4,3)\put(1.5,1.12){$\theta$}\put(0.7,1){$A$}\put(4,0.7){$B$}\put(4.2,3.2){$C$}\put(4.2,2){$h$}\put(2.5,0.3){$\sqrt3 h$}\end{picture}

In the figure , BC is the pole with height h , AB is the shadow of pole of length √3 h

We have to find the angle of elevation of sun that is ∠ θ

→ As we know ,

\sf{tan\theta=\frac{opposite\:side}{adjacent\:side}}

so,

\sf{tan\;\theta=\frac{h}{\sqrt3\;h}}\\\\\sf{tan\;\theta=\frac{1}{\sqrt3}}

and we know

\sf{tan\;30^{\circ} =\frac{1}{\sqrt3}}

Hence,

\boxed{\sf{\theta=30^{\circ}}}

\rule{205}3

Question

If √3 tan θ = 1 , then find the value of sin²θ - cos²θ.

Solution

As given

\rightarrow\sf{\sqrt 3\; tan\theta=1}

\rightarrow\sf{tan\theta=\frac{1}{\sqrt3}}

Also,

\rightarrow\sf{tan\;30^{\circ}=\frac{1}{\sqrt3}}

Hence , we found

\implies\underline{\underline{\sf{\theta=30^{\circ}}}}

We have to find

\longrightarrow\sf{sin^2\theta-cos^2\theta}

Using, \sf{sin\;30^{\circ}=\frac{1}{2}\;and\;cos\;30^{\circ}=\frac{\sqrt3}{2}}

\longrightarrow\sf{(\frac{1}{2})^2-(\frac{\sqrt3}{2})^2}

\longrightarrow\sf{\frac{1}{4}-\frac{3}{4}=\frac{1-3}{4}=\frac{-2}{4}=\frac{-1}{2}}

so,

\longrightarrow\boxed{\sf{sin^2\theta-cos^2\theta=\frac{-1}{2}}}

\rule{205}3

Question

A ladder 15 metres long just reaches the top of a vertical wall . If the ladder makes an angle of 60° with the wall , find the height of the wall.

Solution

\setlength{\unitlength}{1.5cm}\begin{picture}(6,8)\linethickness{0.5mm} \qbezier(1.5,1)(2,1)(4,1)\qbezier(4,1)(4,2)(4,4)\qbezier(1.5,1)(2,1.7)(4,4)\put(1.9,1,2){$60^{\circ}$}\put(4.2,2.5){$x$}\put(2.1,2.6){$15\;m$}\put(0.9,1){$P$}\put(4.3,1){$Q$} \put(4,4.2){$R$}\end{picture}

In the figure ,

PR is the ladder , RQ is the Wall with height x

We have to find the height of wall

so,

\implies\sf{sin\:60^{\circ}=\frac{RQ}{PR}}\\\\\implies\sf{\frac{\sqrt3}{2}=\frac{x}{15}}\\\\\implies\boxed{\sf{x=\frac{15\;\sqrt3}{2}\:m}}

Hence , height of wall is \sf{\frac{15\;\sqrt3}{2}\;m} .

\rule{205}3

Answered by Anonymous
139

\rule{250}3

\large{\red{\underline{\tt{Question:\:-}}}}

tan θ + tan(90 - θ) = sec θ sec(90 - θ)

\large{\red{\underline{\tt{Solution\::-}}}}

\dashrightarrow \sf tan \theta + tan ( 90 - \theta )

\dashrightarrow \sf tan \theta + cot \theta

\dashrightarrow \sf \dfrac{sin \theta}{cos \theta} + \dfrac{cos \theta}{sin \theta}

\dashrightarrow \sf \dfrac{sin^{2} \theta + cos^{2} \theta}{sin \theta \times cos \theta}

\dashrightarrow \sf \dfrac{1}{sin \theta \times cos \theta}

\dashrightarrow \sf Cosec \theta \times Sec \theta

\dashrightarrow \sf Sec (90 - \theta) \times Sec \theta

\orange\dashrightarrow \underline{\boxed{\orange{\sf sec (90 - \theta) = Cos \theta)}}} \dagger

\rule{250}3

\large{\purple{\underline{\tt{Question\::-}}}}

Find the angle of elevation of the sun when shadow of a pole h metres high is √3 h metres long.

\large{\purple{\underline{\tt{figure\::-}}}}

\setlength{\unitlength}{1.5cm}\begin{picture}(6,8)\linethickness{0.5mm}\qbezier(1,1)(3,1)(4,1)\qbezier(4,1)(4,2)(4,3)\qbezier(1,1)(3,2.3)(4,3)\put(1.5,1.12){$\theta$}\put(0.7,1){$A$}\put(4,0.7){$B$}\put(4.2,3.2){$C$}\put(4.2,2){$h$}\put(2.5,0.3){$\sqrt3 h$}\end{picture}

\large{\purple{\underline{\tt{Solution\::-}}}}

\sf \triangle ABC

\longrightarrow \sf tan \theta = \dfrac{CB}{AB} = \dfrac{h}{\sqrt{3}h}

\longrightarrow \sf tan \theta = \dfrac{1}{\sqrt 3}

\longrightarrow \sf tan\theta =  30^{\circ}

\longrightarrow \sf tan \theta = tan\:30^{\circ}

\pink\longrightarrow \underline{\boxed{\pink{\sf \theta = 30^{\circ}}}} \dagger

\rule{250}3

\large{\blue{\underline{\tt{Question \::-}}}}

If √3 tan θ = 1 , then find the value of sin²θ - cos²θ.

\large{\blue{\underline{\tt{Solution\::-}}}}

\leadsto \sf \sqrt{3} tan \theta = 1

\leadsto \sf tan \theta = \dfrac{1}{3}

\leadsto \sf tan \theta = 30^{\circ}

\leadsto \sf sin^{2} \theta - cos^{2} \theta

\leadsto \sf sin^{2} (30^{\circ}) - cos^{2} (30^{\circ})

\leadsto \sf \left (\dfrac{1}{2}\right)^{2} - \left(\dfrac{\sqrt 3}{2}\right)^{2}

\leadsto \sf \dfrac{1}{4} - \dfrac{3}{4}

\green\leadsto \large\underline{\boxed{\green{\sf \dfrac{-1}{2}}}} \dagger

\rule{250}3

\large{\gray{\underline{\tt{Question\::-}}}}

A ladder 5m long, leans against a wall so that it makes an angle of 60° with the horizontal ground. calculate how far up the wall the ladder reaches.

\large{\gray{\underline{\tt{Figure\::-}}}}

\setlength{\unitlength}{1.6cm}\begin{picture}(6,2)\linethickness{0.5mm}\put(7.7,2.9){\large\sf{A}}\put(7.7,1){\large\sf{C}}\put(10.6,1){\large\sf{B}}\put(8,1){\line(1,0){2.5}}\put(8,1){\line(0,2){1.9}}\qbezier(10.5,1)(10,1.4)(8,2.9)\put(7.4,2){\sf{\large{x}}}\put(9.3,2){\sf{\large{15m}}}\put(8.2,1){\line(0,1){0.2}}\put(8,1.2){\line(3,0){0.2}}\qbezier(9.8,1)(9.7,1.25)(10,1.4)\put(9.4,1.2){\sf\large{60^{\circ}$}}\end{picture}

\large{\gray{\underline{\tt{Solution\::-}}}}

\mapsto \sf sin (C) = \dfrac{Perpendicular}{Hypotenuse}

\mapsto \sf sin (60^{\circ}) = \dfrac{AC}{AB}

\mapsto \sf \dfrac{\sqrt 3}{2} = \dfrac{AC}{5m}

\purple\mapsto \underline{\boxed{\purple{\sf AC = \dfrac{15 \sqrt{3m}}{2}}}} \dagger

\rule{250}3

Extra shots :-

\dagger\:\sf Trigonometric\:Values :\\\boxed{\begin{tabular}{c|c|c|c|c|c}Radians/Angle & 0 & 30 & 45 & 60 & 90\\\cline{1-6}Sin \theta & 0 & $\dfrac{1}{2} &$\dfrac{1}{\sqrt{2}} & $\dfrac{\sqrt{3}}{2} & 1\\\cline{1-6}Cos \theta & 1 & $\dfrac{\sqrt{3}}{2}&$\dfrac{1}{\sqrt{2}}&$\dfrac{1}{2}&0\\\cline{1-6}Tan \theta&0&$\dfrac{1}{\sqrt{3}}&1&\sqrt{3}&Not D$\hat{e}$fined\end{tabular}}

\rule{250}3


BrainlyRaaz: ◇Perfect♡As◇Always☆
Similar questions