Math, asked by aj980380, 9 months ago

plss. solve this sum step by step​

Attachments:

Answers

Answered by BrainlyPopularman
5

GIVEN :

  \\ \:\:\: \left( \dfrac{1}{1 - 2i}  +  \dfrac{3}{1 + i}  \right) \left( \dfrac{3 + 4i}{2 - 4i}  \right) \\

TO FIND :

Simplified value = ?

SOLUTION :

• Let the complex number –

  \\ \implies \: Z = \: \left( \dfrac{1}{1 - 2i}  +  \dfrac{3}{1 + i}  \right) \left( \dfrac{3 + 4i}{2 - 4i}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{1(1 + i) + 3(1 - 2i)}{(1 - 2i)(1 + i)}\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{1 + i + 3 - 6i}{(1 - 2i)(1 + i)}\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{4 - 5i}{1 + i - 2i - 2 {i}^{2} }\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{4 - 5i}{1 + i - 2i - 2( - 1) }\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right)  \:  \:  \:  \: [  \: \because \:  {i}^{2} =   - 1]\\

  \\ \implies \: Z = \: \left( \dfrac{4 - 5i}{1 + i - 2i  + 2}\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right)\\

  \\ \implies \: Z = \: \left( \dfrac{4 - 5i}{3 - i}\right) \left( \dfrac{3 + 4i}{2 - 4i}  \right)\\

  \\ \implies \: Z = \: \left( \dfrac{12 + 16i - 15i - 20 {i}^{2}}{ 6 - 12i - 2i + 4 {i}^{2}}\right) \\

  \\ \implies \: Z = \: \left( \dfrac{12 + 16i - 15i - 20( - 1)}{ 6 - 12i - 2i + 4( - 1)}\right) \\

  \\ \implies \: Z = \: \left( \dfrac{12 + 16i - 15i + 20}{ 6 - 12i - 2i - 4}\right) \\

  \\ \implies \: Z = \: \left( \dfrac{32  + i}{ 2- 14i }\right) \\

• Now Rationalization –

  \\ \implies \: Z = \: \left( \dfrac{32  + i}{ 2- 14i } \times  \dfrac{2 + 14i}{2 + 14i} \right) \\

  \\ \implies \: Z = \: \left( \dfrac{64 + 448i + 2i + 14 {i}^{2}}{4 - 196 {i}^{2}  }  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{64 + 448i + 2i + 14( - 1)}{4 - 196( - 1)}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{64 + 448i + 2i  -  14}{4  + 196}  \right) \\

  \\ \implies \: Z = \: \left( \dfrac{50 + 450i }{200}  \right) \\

  \\ \implies \large{ \boxed{Z = \frac{1 + 9i}{4} }} \:  \\

Similar questions