Math, asked by ganeshkumarsushrusha, 2 months ago

Plsss ssss answer fast

Attachments:

Answers

Answered by KingSrikar
4

\large{\textbf{\textsf{Value of a = 0 in the Given Expression}}}

\to\sf{\displaystyle\frac{1-a}{1+a}=\frac{1-a+a^{2}}{1+a+a^{2}}}

\bigstar\textbf{\textsf{  Simple numerical terms are commonly written last}}

\to\sf{\displaystyle \frac{-a+1}{a+1}=\frac{-a+a^{2}+1}{a+a^{2}+1}}

\bigstar\textbf{\textsf{  Apply Cross Multiplication}}

\to\sf{\left(a+a^{2}+1\right)(-a+1)=(a+1)\left(-a+a^{2}+1\right)}

\bigstar\textbf{\textsf{  Expand the terms by Distributive Property}}

\to\sf{-a\times a+a-a^{2} a+a^{2}-a+1=-a\times a+a\times a^{2}+a-a+a^{2}+1}

\bigstar\textbf{\textsf{  Combine like factors in this term by adding up all exponents}}}

\to\sf{-a^{1+1}+a-a^{2+1}+a^{2}-a+1=-a^{1+1}+a^{1+2}+a-a+a^{2}+1}

\to\sf{-a^{2}+a-a^{3}+a^{2}-a+1=-a^{2}+a^{3}+a-a+a^{2}+1}

\bigstar\textbf{\textsf{  Organize this expression into groups of like terms}}

\to\sf{-a^{2}+a^{2}+a-a-a^{3}+1=-a^{2}+a^{2}+a^{3}+a-a+1}

\to\sf{-a^{3}+1=a^{3}+1}

\bigstar\textbf{\textsf{  Subtract 1 from both Sides}}

\to\sf{-a^{3}=a^{3}}

\bigstar\textbf{\textsf{  Subtract $\bf{\sf{a^3}}$ from both Sides}}

\to\sf{-2 a^{3}=0}

\to\sf{a^{3}=0}

\bigstar\textbf{\textsf{  Taking Cube Root on both Sides}}

\large\boxed{\boxed{\to\sf{a=0}}}

Answered by jayakeerthan19
0

Answer:

Simplifying the given expression,

(a+1)(a−1)(a

2

+1)=[(a+1)(a−1)]×(a

2

+1)

=(a

2

−1

2

)×(a

2

+1)[Using the identity (x+y)(x−y)=x

2

−y

2

]

=(a

2

−1)(a

2

+1)

=(a

2

)

2

−1[Using the identity (x+y)(x−y)=x

2

−y

2

]

=a

4

−1

Step-by-step explanation:

Similar questions